当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhanced Antimicrobial Activity and Structural Transitions of a Nanofibrillated Cellulose–Nisin Biocomposite Suspension
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2018-05-16 00:00:00 , DOI: 10.1021/acsami.8b04470 Ramon Weishaupt 1 , Lukas Heuberger 1 , Gilberto Siqueira 2 , Beatrice Gutt 1 , Tanja Zimmermann 2 , Katharina Maniura-Weber 1 , Stefan Salentinig 1 , Greta Faccio 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2018-05-16 00:00:00 , DOI: 10.1021/acsami.8b04470 Ramon Weishaupt 1 , Lukas Heuberger 1 , Gilberto Siqueira 2 , Beatrice Gutt 1 , Tanja Zimmermann 2 , Katharina Maniura-Weber 1 , Stefan Salentinig 1 , Greta Faccio 1
Affiliation
Resistance to antibiotics has posed a high demand for novel strategies to fight bacterial infections. Antimicrobial peptides (AMPs) are a promising alternative to conventional antibiotics. However, their poor solubility in water and sensitivity to degradation has limited their application. Here, we report the design of a smart, pH-responsive antimicrobial nanobiocomposite material based on the AMP nisin and 2,2,6,6-tetramethyl-1-piperidinyloxyl-oxidized nanofibrillated cellulose (TONFC). Morphological transformations of the nanoscale structure of nisin functionalized-TONFC fibrils were discovered at pH values between 5.8 and 8.0 using small-angle X-ray scattering. Complementary ζ potential measurements indicate that electrostatic attractions between the negatively charged TONFC surface and the positively charged nisin molecules are responsible for the integration of nisin. Modification of the pH level or increasing the ionic strength reduces the nisin binding capacity of TONFC. Biological evaluation studies using a bioluminescence-based reporter strain of Bacillus subtilis and a clinically relevant strain of Staphylococcus aureus indicated a significantly higher antimicrobial activity of the TONFC–nisin biocomposite compared to the pure nisin against both strains under physiological pH and ionic strength conditions. The in-depth characterization of this new class of antimicrobial biocomposite material based on nanocellulose and nisin may guide the rational design of sustainable antimicrobial materials.
中文翻译:
纳米原纤化纤维素-乳链菌肽生物复合悬浮液的增强抗菌活性和结构转变
对抗生素的耐药性对对抗细菌感染的新策略提出了很高的要求。抗菌肽(AMPs)是传统抗生素的有前途的替代品。然而,它们在水中的不良溶解性和对降解的敏感性限制了它们的应用。在这里,我们报告基于AMP乳酸链球菌肽和2,2,6,6-四甲基-1-哌啶基氧基氧化的纳米原纤化纤维素(TONFC)的智能,pH响应的抗菌纳米生物复合材料的设计。使用小角X射线散射在pH值介于5.8和8.0之间发现了乳链菌肽官能化的TONFC原纤维的纳米级结构的形态学转变。互补的ζ电位测量结果表明,带负电荷的TONFC表面和带正电荷的乳酸链球菌肽分子之间的静电引力是乳酸链球菌肽整合的原因。调节pH值或增加离子强度会降低TONFC的乳链菌肽结合能力。使用基于生物发光的报告菌株的生物学评估研究与枯草芽孢杆菌和临床相关的金黄色葡萄球菌菌株相比,在生理pH和离子强度条件下,TONFC-乳酸链球菌素生物复合材料对两种菌株的抗菌活性均明显高于纯乳酸链球菌素。这种基于纳米纤维素和乳链菌肽的新型抗菌生物复合材料的深入表征可指导可持续抗菌材料的合理设计。
更新日期:2018-05-16
中文翻译:
纳米原纤化纤维素-乳链菌肽生物复合悬浮液的增强抗菌活性和结构转变
对抗生素的耐药性对对抗细菌感染的新策略提出了很高的要求。抗菌肽(AMPs)是传统抗生素的有前途的替代品。然而,它们在水中的不良溶解性和对降解的敏感性限制了它们的应用。在这里,我们报告基于AMP乳酸链球菌肽和2,2,6,6-四甲基-1-哌啶基氧基氧化的纳米原纤化纤维素(TONFC)的智能,pH响应的抗菌纳米生物复合材料的设计。使用小角X射线散射在pH值介于5.8和8.0之间发现了乳链菌肽官能化的TONFC原纤维的纳米级结构的形态学转变。互补的ζ电位测量结果表明,带负电荷的TONFC表面和带正电荷的乳酸链球菌肽分子之间的静电引力是乳酸链球菌肽整合的原因。调节pH值或增加离子强度会降低TONFC的乳链菌肽结合能力。使用基于生物发光的报告菌株的生物学评估研究与枯草芽孢杆菌和临床相关的金黄色葡萄球菌菌株相比,在生理pH和离子强度条件下,TONFC-乳酸链球菌素生物复合材料对两种菌株的抗菌活性均明显高于纯乳酸链球菌素。这种基于纳米纤维素和乳链菌肽的新型抗菌生物复合材料的深入表征可指导可持续抗菌材料的合理设计。