当前位置:
X-MOL 学术
›
ChemElectroChem
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Growth of MoS2 Nanoflowers with Expanded Interlayer Distance onto N‐Doped Graphene for Reversible Lithium Storage
ChemElectroChem ( IF 3.5 ) Pub Date : 2018-06-01 , DOI: 10.1002/celc.201800520 Minghong Wu 1 , Saisai Xia 2 , Jianfeng Ding 2 , Bing Zhao 1 , Yalong Jiao 3 , Aijun Du 3 , Haijiao Zhang 2
ChemElectroChem ( IF 3.5 ) Pub Date : 2018-06-01 , DOI: 10.1002/celc.201800520 Minghong Wu 1 , Saisai Xia 2 , Jianfeng Ding 2 , Bing Zhao 1 , Yalong Jiao 3 , Aijun Du 3 , Haijiao Zhang 2
Affiliation
Molybdenum disulfide (MoS2) has been widely deemed as an attractive anode candidate for rechargeable lithium‐ion batteries (LIBs) on account of its apparently high capacity and intriguing 2‐dimensional layered structure. In our work, the growth of MoS2 nanoflowers with an expanded interlayer spacing onto nitrogen‐doped reduced graphene oxide has been successfully performed by using an effective poly(vinylpyrrolidone) (PVP)‐guided assembly route. The theoretical and experimental results indicate that PVP, as a linker, is a major contribution, both in regulating the microstructure of MoS2 nanoflowers and improving the electrochemical properties of the flower‐like MoS2/N‐graphene (F‐MoS2/NG) composite. When utilized as anode materials, the as‐made F‐MoS2/NG composite shows a boosted electrochemical performance for reversible lithium storage. It delivers a high reversible capacity of 1060 mAh/g at 100 mA/g even after 150 cycles, which is much higher than 416 mAh/g of the control MoS2/G electrode. The kinetics analysis reveals that the remarkable rate capability of F‐MoS2/NG is mainly ascribed to a pseudocapacitive process, which is rendered by its unique architecture including well‐defined MoS2 nanoflowers, the doping of nitrogen onto graphene, and the enhanced synergistic effect between them.
中文翻译:
具有可扩展层间距离的MoS2纳米花到N掺杂石墨烯上的可逆锂存储生长
由于二硫化钼(MoS 2)的高容量和引人入胜的二维分层结构,因此被广泛认为是可再充电锂离子电池(LIB)的有吸引力的阳极候选材料。在我们的工作中,通过使用有效的聚乙烯吡咯烷酮(PVP)引导的组装路线成功地完成了MoS 2纳米花的层间间距扩展到氮掺杂的还原氧化石墨烯上的生长。理论和实验结果表明,PVP作为连接剂,在调节MoS 2纳米花的微观结构以及改善花状MoS 2 / N-石墨烯(F-MoS 2/ NG)复合。当用作阳极材料时,制成的F-MoS 2 / NG复合材料在可逆锂存储方面显示出增强的电化学性能。即使在150次循环后,它在100 mA / g时仍可提供1060 mAh / g的高可逆容量,远高于对照MoS 2 / G电极的416 mAh / g 。动力学分析表明,F-MoS 2 / NG极高的速率能力主要归因于拟电容过程,其独特的体系结构包括明确定义的MoS 2纳米花,氮在石墨烯上的掺杂以及增强的协同作用。他们之间的影响。
更新日期:2018-06-01
中文翻译:
具有可扩展层间距离的MoS2纳米花到N掺杂石墨烯上的可逆锂存储生长
由于二硫化钼(MoS 2)的高容量和引人入胜的二维分层结构,因此被广泛认为是可再充电锂离子电池(LIB)的有吸引力的阳极候选材料。在我们的工作中,通过使用有效的聚乙烯吡咯烷酮(PVP)引导的组装路线成功地完成了MoS 2纳米花的层间间距扩展到氮掺杂的还原氧化石墨烯上的生长。理论和实验结果表明,PVP作为连接剂,在调节MoS 2纳米花的微观结构以及改善花状MoS 2 / N-石墨烯(F-MoS 2/ NG)复合。当用作阳极材料时,制成的F-MoS 2 / NG复合材料在可逆锂存储方面显示出增强的电化学性能。即使在150次循环后,它在100 mA / g时仍可提供1060 mAh / g的高可逆容量,远高于对照MoS 2 / G电极的416 mAh / g 。动力学分析表明,F-MoS 2 / NG极高的速率能力主要归因于拟电容过程,其独特的体系结构包括明确定义的MoS 2纳米花,氮在石墨烯上的掺杂以及增强的协同作用。他们之间的影响。