当前位置:
X-MOL 学术
›
J. Phys. Chem. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Channeling Excitons to Emissive Defect Sites in Carbon Nanotube Semiconductors beyond the Dilute Regime
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2018-05-10 00:00:00 , DOI: 10.1021/acs.jpclett.8b00930 Lyndsey R. Powell 1 , Yanmei Piao 1 , Allen L. Ng 1 , YuHuang Wang 1, 2
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2018-05-10 00:00:00 , DOI: 10.1021/acs.jpclett.8b00930 Lyndsey R. Powell 1 , Yanmei Piao 1 , Allen L. Ng 1 , YuHuang Wang 1, 2
Affiliation
The exciton photoluminescence of carbon nanotube semiconductors has been intensively exploited for bioimaging, anticounterfeiting, photodetection, and quantum information science. However, at high concentrations, photoluminescence is lost to self-quenching because of the nearly complete overlap of the absorption and emissive states (∼10 meV Stokes shift). Here we show that by introducing sparse fluorescent quantum defects via covalent chemistry, self-quenching can be efficiently bypassed by means of the new emission route. The defect photoluminescence is significantly red-shifted by 190 meV for p-nitroaryl tailored (6,5)-single-walled carbon nanotubes (SWCNTs) from the native emission of the nanotube. Notably, the defect photoluminescence is more than 34 times brighter than the native photoluminescence of unfunctionalized SWCNTs in the most concentrated nanotube solution tested (2.7 × 1014 nanotubes/mL). Moreover, we show that defect photoluminescence is more resistant to self-quenching than the native state in a dense film, which is the upper limit of concentration. Our findings open opportunities to harness nanotube excitons in highly concentrated systems for applications where photoluminescence brightness and light-collecting efficiency are mutually important.
中文翻译:
将激子引导到稀释态之外的碳纳米管半导体中的发射缺陷位点
碳纳米管半导体的激子光致发光已被广泛用于生物成像,防伪,光检测和量子信息科学。但是,在高浓度下,由于吸收和发射态几乎完全重叠(约10 meV斯托克斯位移),光致发光失去了自猝灭作用。在这里,我们表明,通过共价化学引入稀疏的荧光量子缺陷,可以通过新的发射途径有效地绕过自猝灭。对于p,缺陷光致发光显着红移了190 meV-硝基芳基化合物从纳米管的天然发射光中剪裁而成的(6,5)-单壁碳纳米管(SWCNT)。值得注意的是,在测试的最浓缩的纳米管溶液(2.7×10 14纳米管/ mL)中,缺陷的光致发光比未官能化的SWCNT的天然光致发光亮34倍以上。此外,我们表明缺陷光致发光比致密膜中的原始状态更耐自猝灭,这是浓度的上限。我们的发现为在光致发光亮度和集光效率至关重要的应用中利用纳米管激子在高度集中的系统中提供了机会。
更新日期:2018-05-10
中文翻译:
将激子引导到稀释态之外的碳纳米管半导体中的发射缺陷位点
碳纳米管半导体的激子光致发光已被广泛用于生物成像,防伪,光检测和量子信息科学。但是,在高浓度下,由于吸收和发射态几乎完全重叠(约10 meV斯托克斯位移),光致发光失去了自猝灭作用。在这里,我们表明,通过共价化学引入稀疏的荧光量子缺陷,可以通过新的发射途径有效地绕过自猝灭。对于p,缺陷光致发光显着红移了190 meV-硝基芳基化合物从纳米管的天然发射光中剪裁而成的(6,5)-单壁碳纳米管(SWCNT)。值得注意的是,在测试的最浓缩的纳米管溶液(2.7×10 14纳米管/ mL)中,缺陷的光致发光比未官能化的SWCNT的天然光致发光亮34倍以上。此外,我们表明缺陷光致发光比致密膜中的原始状态更耐自猝灭,这是浓度的上限。我们的发现为在光致发光亮度和集光效率至关重要的应用中利用纳米管激子在高度集中的系统中提供了机会。