The Astronomy and Astrophysics Review ( IF 27.8 ) Pub Date : 2018-05-10 , DOI: 10.1007/s00159-018-0108-y Helmut Lammer , Aubrey L. Zerkle , Stefanie Gebauer , Nicola Tosi , Lena Noack , Manuel Scherf , Elke Pilat-Lohinger , Manuel Güdel , John Lee Grenfell , Mareike Godolt , Athanasia Nikolaou
We review the origin and evolution of the atmospheres of Earth, Venus and Mars from the time when their accreting bodies were released from the protoplanetary disk a few million years after the origin of the Sun. If the accreting planetary cores reached masses \(\ge 0.5 M_\mathrm{Earth}\) before the gas in the disk disappeared, primordial atmospheres consisting mainly of H\(_2\) form around the young planetary body, contrary to late-stage planet formation, where terrestrial planets accrete material after the nebula phase of the disk. The differences between these two scenarios are explored by investigating non-radiogenic atmospheric noble gas isotope anomalies observed on the three terrestrial planets. The role of the young Sun’s more efficient EUV radiation and of the plasma environment into the escape of early atmospheres is also addressed. We discuss the catastrophic outgassing of volatiles and the formation and cooling of steam atmospheres after the solidification of magma oceans and we describe the geochemical evidence for additional delivery of volatile-rich chondritic materials during the main stages of terrestrial planet formation. The evolution scenario of early Earth is then compared with the atmospheric evolution of planets where no active plate tectonics emerged like on Venus and Mars. We look at the diversity between early Earth, Venus and Mars, which is found to be related to their differing geochemical, geodynamical and geophysical conditions, including plate tectonics, crust and mantle oxidation processes and their involvement in degassing processes of secondary \(\hbox {N}_2\) atmospheres. The buildup of atmospheric \(\hbox {N}_2\), \(\hbox {O}_2\), and the role of greenhouse gases such as \(\hbox {CO}_2\) and \(\hbox {CH}_4\) to counter the Faint Young Sun Paradox (FYSP), when the earliest life forms on Earth originated until the Great Oxidation Event \(\approx \) 2.3 Gyr ago, are addressed. This review concludes with a discussion on the implications of understanding Earth’s geophysical and related atmospheric evolution in relation to the discovery of potential habitable terrestrial exoplanets.
中文翻译:
早期金星、地球和火星大气层的起源和演化
我们回顾了地球、金星和火星的大气层的起源和演化,从太阳诞生几百万年后它们的吸积体从原行星盘中释放出来开始。如果吸积的行星核心在盘中的气体消失之前达到质量\(\ge 0.5 M_\mathrm{Earth}\) ,则主要由 H \(_2\)组成的原始大气围绕年轻的行星体形成,这与晚期行星体相反。行星形成阶段,类地行星在盘的星云阶段后吸积物质。通过研究在三颗类地行星上观察到的非放射性大气惰性气体同位素异常,探讨了这两种情况之间的差异。年轻太阳更有效的极紫外辐射和等离子体环境在早期大气逃逸中的作用也得到了解决。我们讨论了岩浆海洋凝固后挥发物的灾难性放气以及蒸汽大气的形成和冷却,并描述了在类地行星形成的主要阶段额外输送富含挥发物的球粒陨石材料的地球化学证据。然后将早期地球的演化情景与行星的大气演化进行比较,这些行星没有像金星和火星那样出现活跃的板块构造。我们研究了早期地球、金星和火星之间的多样性,发现这与它们不同的地球化学、地球动力学和地球物理条件有关,包括板块构造、地壳和地幔氧化过程以及它们参与次级的脱气过程\(\hbox {N}_2\)个大气压。 大气\(\hbox {N}_2\) 、 \(\hbox {O}_2\)的累积,以及\(\hbox {CO}_2\)和\(\hbox { CH}_4\)来反驳微弱年轻太阳悖论(FYSP),地球上最早的生命形式起源于\(\大约\) 2.3 Gyr前的大氧化事件。本综述最后讨论了了解地球物理和相关大气演化对发现潜在宜居类地系外行星的影响。