当前位置:
X-MOL 学术
›
Energy Fuels
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Surfactant Stabilized Oil-in-Water Nanoemulsion: Stability, Interfacial Tension, and Rheology Study for Enhanced Oil Recovery Application
Energy & Fuels ( IF 5.2 ) Pub Date : 2018-05-09 00:00:00 , DOI: 10.1021/acs.energyfuels.8b00043 Narendra Kumar 1 , Ajay Mandal 1
Energy & Fuels ( IF 5.2 ) Pub Date : 2018-05-09 00:00:00 , DOI: 10.1021/acs.energyfuels.8b00043 Narendra Kumar 1 , Ajay Mandal 1
Affiliation
Nanoemulsions are kinetically stable biphasic dispersion of two immiscible liquids typically stabilized by an emulsifier with droplet sizes in the range of 10–200 nm. Present work deals with the formulation and characterization of stable oil-in-water nanoemulsions using nonionic surfactant (Tween 40) and light mineral oil for their application in enhanced oil recovery. The stability study of the nanoemulsions formed by high energy and low energy method was accomplished by bottle testing method. The emulsions were characterized in terms of droplet size, morphology and inner structure, surface charge, interfacial tension, and rheology. Droplet sizes of 18–31 nm obtained by dynamic light scattering analysis and surface charge values above −35 mV obtained by ζ potential measurement prove the higher kinetic stability of the formed emulsions. Cryo-TEM micrographs reveal the surface morphology and inner structure of nanoemulsions. A miscibility test was performed to determine the dissolving ability of the nanoemulsions with crude oil. Measurement of interfacial tension (IFT) by pendant drop method shows a considerable reduction in IFT values with the increase of surfactant concentration and temperature, which is highly desirable for recovering trapped oil from the fine pores of the reservoirs. The viscosity of the nanoemulsions remains stable at a wide temperature (30–70 °C) range, denoting its thermal stability. The viscoelastic property of prepared nanoemulsions shows the increase of storage modulus (G′) and loss modulus (G″) with the increase in surfactant concentration and angular frequency (rad/s). Specific frequency (SF), the crossover point of G′ and G″, indicates the transition between elastic and viscous phases of nanoemulsions. A stable value of loss modulus after SF denotes better flowability of the emulsion. To test the efficiency of nanoemulsion in enhanced oil recovery, flooding experiment was performed by injection of a small pore volume of emulsion slug in a sand pack system, and an additional recovery of 28.94% was obtained after conventional water flooding.
中文翻译:
表面活性剂稳定的水包油纳米乳液:稳定性,界面张力和流变学研究,可提高采油率
纳米乳液是两种不混溶液体的动力学稳定的双相分散体,通常由乳化剂稳定,液滴尺寸在10-200 nm范围内。当前的工作涉及使用非离子表面活性剂(吐温40)和轻质矿物油在稳定的水包油型纳米乳液的配制和表征中,以用于提高采油率。通过瓶装测试法完成了高能低能法制备纳米乳液的稳定性研究。根据液滴尺寸,形态和内部结构,表面电荷,界面张力和流变学对乳液进行表征。通过动态光散射分析获得的液滴尺寸为18-31 nm,通过ζ电位测量获得的表面电荷值高于-35 mV,证明了形成的乳液具有更高的动力学稳定性。Cryo-TEM显微照片揭示了纳米乳液的表面形态和内部结构。进行混溶性测试以确定纳米乳液与原油的溶解能力。通过悬滴法测量界面张力(IFT)表明,随着表面活性剂浓度和温度的升高,IFT值显着降低,这对于从储层细孔中回收被捕集的油非常有用。纳米乳液的粘度在很宽的温度(30–70°C)范围内保持稳定,表明其热稳定性。制备的纳米乳液的粘弹性表现出储能模量的增加(通过悬滴法测量界面张力(IFT)表明,随着表面活性剂浓度和温度的升高,IFT值显着降低,这对于从储层细孔中回收被捕集的油非常有用。纳米乳液的粘度在很宽的温度(30–70°C)范围内保持稳定,表明其热稳定性。制备的纳米乳液的粘弹性表现出储能模量的增加(通过悬滴法测量界面张力(IFT)表明,随着表面活性剂浓度和温度的升高,IFT值显着降低,这对于从储层细孔中回收被捕集的油非常有用。纳米乳液的粘度在很宽的温度(30–70°C)范围内保持稳定,表明其热稳定性。制备的纳米乳液的粘弹性表现出储能模量的增加(ģ ')和损耗模量(G ^ “),在表面活性剂浓度和角频率(弧度/秒)的增加。特定频率(SF),的交叉点ģ '和G ^ “表示纳米乳剂的弹性和粘性阶段之间的过渡。SF之后的损耗模量的稳定值表示乳液的更好的流动性。为了测试纳米乳液在提高油采收率方面的效率,通过在砂包系统中注入小孔隙体积的乳液段塞来进行驱油实验,常规注水后可获得28.94%的额外采收率。
更新日期:2018-05-09
中文翻译:
表面活性剂稳定的水包油纳米乳液:稳定性,界面张力和流变学研究,可提高采油率
纳米乳液是两种不混溶液体的动力学稳定的双相分散体,通常由乳化剂稳定,液滴尺寸在10-200 nm范围内。当前的工作涉及使用非离子表面活性剂(吐温40)和轻质矿物油在稳定的水包油型纳米乳液的配制和表征中,以用于提高采油率。通过瓶装测试法完成了高能低能法制备纳米乳液的稳定性研究。根据液滴尺寸,形态和内部结构,表面电荷,界面张力和流变学对乳液进行表征。通过动态光散射分析获得的液滴尺寸为18-31 nm,通过ζ电位测量获得的表面电荷值高于-35 mV,证明了形成的乳液具有更高的动力学稳定性。Cryo-TEM显微照片揭示了纳米乳液的表面形态和内部结构。进行混溶性测试以确定纳米乳液与原油的溶解能力。通过悬滴法测量界面张力(IFT)表明,随着表面活性剂浓度和温度的升高,IFT值显着降低,这对于从储层细孔中回收被捕集的油非常有用。纳米乳液的粘度在很宽的温度(30–70°C)范围内保持稳定,表明其热稳定性。制备的纳米乳液的粘弹性表现出储能模量的增加(通过悬滴法测量界面张力(IFT)表明,随着表面活性剂浓度和温度的升高,IFT值显着降低,这对于从储层细孔中回收被捕集的油非常有用。纳米乳液的粘度在很宽的温度(30–70°C)范围内保持稳定,表明其热稳定性。制备的纳米乳液的粘弹性表现出储能模量的增加(通过悬滴法测量界面张力(IFT)表明,随着表面活性剂浓度和温度的升高,IFT值显着降低,这对于从储层细孔中回收被捕集的油非常有用。纳米乳液的粘度在很宽的温度(30–70°C)范围内保持稳定,表明其热稳定性。制备的纳米乳液的粘弹性表现出储能模量的增加(ģ ')和损耗模量(G ^ “),在表面活性剂浓度和角频率(弧度/秒)的增加。特定频率(SF),的交叉点ģ '和G ^ “表示纳米乳剂的弹性和粘性阶段之间的过渡。SF之后的损耗模量的稳定值表示乳液的更好的流动性。为了测试纳米乳液在提高油采收率方面的效率,通过在砂包系统中注入小孔隙体积的乳液段塞来进行驱油实验,常规注水后可获得28.94%的额外采收率。