当前位置:
X-MOL 学术
›
Nat. Commun.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Structural basis of DNA gyrase inhibition by antibacterial QPT-1, anticancer drug etoposide and moxifloxacin.
Nature Communications ( IF 14.7 ) Pub Date : 2015-Dec-07 , DOI: 10.1038/ncomms10048 Pan F. Chan , Velupillai Srikannathasan , Jianzhong Huang , Haifeng Cui , Andrew P. Fosberry , Minghua Gu , Michael M. Hann , Martin Hibbs , Paul Homes , Karen Ingraham , Jason Pizzollo , Carol Shen , Anthony J. Shillings , Claus E. Spitzfaden , Robert Tanner , Andrew J. Theobald , Robert A. Stavenger , Benjamin D. Bax , Michael N. Gwynn
Nature Communications ( IF 14.7 ) Pub Date : 2015-Dec-07 , DOI: 10.1038/ncomms10048 Pan F. Chan , Velupillai Srikannathasan , Jianzhong Huang , Haifeng Cui , Andrew P. Fosberry , Minghua Gu , Michael M. Hann , Martin Hibbs , Paul Homes , Karen Ingraham , Jason Pizzollo , Carol Shen , Anthony J. Shillings , Claus E. Spitzfaden , Robert Tanner , Andrew J. Theobald , Robert A. Stavenger , Benjamin D. Bax , Michael N. Gwynn
New antibacterials are needed to tackle antibiotic-resistant bacteria. Type IIA topoisomerases (topo2As), the targets of fluoroquinolones, regulate DNA topology by creating transient double-strand DNA breaks. Here we report the first co-crystal structures of the antibacterial QPT-1 and the anticancer drug etoposide with Staphylococcus aureus DNA gyrase, showing binding at the same sites in the cleaved DNA as the fluoroquinolone moxifloxacin. Unlike moxifloxacin, QPT-1 and etoposide interact with conserved GyrB TOPRIM residues rationalizing why QPT-1 can overcome fluoroquinolone resistance. Our data show etoposide's antibacterial activity is due to DNA gyrase inhibition and suggests other anticancer agents act similarly. Analysis of multiple DNA gyrase co-crystal structures, including asymmetric cleavage complexes, led to a 'pair of swing-doors' hypothesis in which the movement of one DNA segment regulates cleavage and religation of the second DNA duplex. This mechanism can explain QPT-1's bacterial specificity. Structure-based strategies for developing topo2A antibacterials are suggested.
中文翻译:
抗菌QPT-1,抗癌药依托泊苷和莫西沙星抑制DNA促旋酶的结构基础。
需要新的抗菌素来解决抗药性细菌。IIA型拓扑异构酶(topo2As)是氟喹诺酮类药物的靶标,通过产生瞬时双链DNA断裂来调节DNA拓扑结构。在这里,我们报告的抗菌QPT-1和抗癌药物依托泊苷与金黄色葡萄球菌DNA促旋酶的第一个共晶体结构,显示在裂解的DNA中与氟喹诺酮莫西沙星在相同的位点结合。与莫西沙星不同,QPT-1和依托泊苷与保守的GyrB TOPRIM残基相互作用,使QPT-1可以克服氟喹诺酮耐药性变得合理。我们的数据显示依托泊苷的抗菌活性归因于DNA促旋酶的抑制作用,并表明其他抗癌药也具有类似作用。对多个DNA促旋酶共晶体结构(包括不对称裂解复合物)的分析导致“ 一对旋转门假说,其中一个DNA片段的运动调节第二个DNA双链体的切割和重新连接。这种机制可以解释QPT-1的细菌特异性。建议基于结构的策略来开发topo2A抗菌剂。
更新日期:2015-12-10
中文翻译:
抗菌QPT-1,抗癌药依托泊苷和莫西沙星抑制DNA促旋酶的结构基础。
需要新的抗菌素来解决抗药性细菌。IIA型拓扑异构酶(topo2As)是氟喹诺酮类药物的靶标,通过产生瞬时双链DNA断裂来调节DNA拓扑结构。在这里,我们报告的抗菌QPT-1和抗癌药物依托泊苷与金黄色葡萄球菌DNA促旋酶的第一个共晶体结构,显示在裂解的DNA中与氟喹诺酮莫西沙星在相同的位点结合。与莫西沙星不同,QPT-1和依托泊苷与保守的GyrB TOPRIM残基相互作用,使QPT-1可以克服氟喹诺酮耐药性变得合理。我们的数据显示依托泊苷的抗菌活性归因于DNA促旋酶的抑制作用,并表明其他抗癌药也具有类似作用。对多个DNA促旋酶共晶体结构(包括不对称裂解复合物)的分析导致“ 一对旋转门假说,其中一个DNA片段的运动调节第二个DNA双链体的切割和重新连接。这种机制可以解释QPT-1的细菌特异性。建议基于结构的策略来开发topo2A抗菌剂。