Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High Detectivity Graphene‐Silicon Heterojunction Photodetector
Small ( IF 13.0 ) Pub Date : 2015-12-08 , DOI: 10.1002/smll.201502336
Xinming Li 1 , Miao Zhu 2 , Mingde Du 1 , Zheng Lv 3 , Li Zhang 2 , Yuanchang Li 1 , Yao Yang 2 , Tingting Yang 2 , Xiao Li 2 , Kunlin Wang 2 , Hongwei Zhu 2 , Ying Fang 1, 4
Small ( IF 13.0 ) Pub Date : 2015-12-08 , DOI: 10.1002/smll.201502336
Xinming Li 1 , Miao Zhu 2 , Mingde Du 1 , Zheng Lv 3 , Li Zhang 2 , Yuanchang Li 1 , Yao Yang 2 , Tingting Yang 2 , Xiao Li 2 , Kunlin Wang 2 , Hongwei Zhu 2 , Ying Fang 1, 4
Affiliation
![]() |
A graphene/n‐type silicon (n‐Si) heterojunction has been demonstrated to exhibit strong rectifying behavior and high photoresponsivity, which can be utilized for the development of high‐performance photodetectors. However, graphene/n‐Si heterojunction photodetectors reported previously suffer from relatively low specific detectivity due to large dark current. Here, by introducing a thin interfacial oxide layer, the dark current of graphene/n‐Si heterojunction has been reduced by two orders of magnitude at zero bias. At room temperature, the graphene/n‐Si photodetector with interfacial oxide exhibits a specific detectivity up to 5.77 × 1013 cm Hz1/2 W‐1 at the peak wavelength of 890 nm in vacuum, which is highest reported detectivity at room temperature for planar graphene/Si heterojunction photodetectors. In addition, the improved graphene/n‐Si heterojunction photodetectors possess high responsivity of 0.73 A W−1 and high photo‐to‐dark current ratio of ≈107. The current noise spectral density of the graphene/n‐Si photodetector has been characterized under ambient and vacuum conditions, which shows that the dark current can be further suppressed in vacuum. These results demonstrate that graphene/Si heterojunction with interfacial oxide is promising for the development of high detectivity photodetectors.
中文翻译:
高探测石墨烯-硅异质结光电探测器
已证明石墨烯/ n型硅(n-Si)异质结具有很强的整流性能和高光响应性,可用于开发高性能光电探测器。但是,先前报道的石墨烯/ n-Si异质结光电探测器由于暗电流大而具有相对较低的比探测率。在这里,通过引入薄的界面氧化物层,在零偏压下,石墨烯/ n-Si异质结的暗电流已减小了两个数量级。在室温下,具有界面氧化物的石墨烯/ n-Si光电探测器显示出高达5.77×10 13 cm Hz 1/2 W -1的比探测率在真空中的峰值波长为890 nm时,这是平面石墨烯/ Si异质结光电探测器在室温下报告的最高检测率。此外,改进的石墨烯/正Si异质光检测器具有0.73的AW高响应-1和≈10高光-暗电流比7。石墨烯/ n-Si光电探测器的当前噪声频谱密度已经在环境和真空条件下进行了表征,这表明可以在真空中进一步抑制暗电流。这些结果表明,具有界面氧化物的石墨烯/ Si异质结对于高检测率光电检测器的开发是有前途的。
更新日期:2015-12-08
中文翻译:

高探测石墨烯-硅异质结光电探测器
已证明石墨烯/ n型硅(n-Si)异质结具有很强的整流性能和高光响应性,可用于开发高性能光电探测器。但是,先前报道的石墨烯/ n-Si异质结光电探测器由于暗电流大而具有相对较低的比探测率。在这里,通过引入薄的界面氧化物层,在零偏压下,石墨烯/ n-Si异质结的暗电流已减小了两个数量级。在室温下,具有界面氧化物的石墨烯/ n-Si光电探测器显示出高达5.77×10 13 cm Hz 1/2 W -1的比探测率在真空中的峰值波长为890 nm时,这是平面石墨烯/ Si异质结光电探测器在室温下报告的最高检测率。此外,改进的石墨烯/正Si异质光检测器具有0.73的AW高响应-1和≈10高光-暗电流比7。石墨烯/ n-Si光电探测器的当前噪声频谱密度已经在环境和真空条件下进行了表征,这表明可以在真空中进一步抑制暗电流。这些结果表明,具有界面氧化物的石墨烯/ Si异质结对于高检测率光电检测器的开发是有前途的。