当前位置:
X-MOL 学术
›
J. Mater. Chem. A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
In3+-doped BiVO4 photoanodes with passivated surface states for photoelectrochemical water oxidation†
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2018-05-02 00:00:00 , DOI: 10.1039/c8ta01377b Xiaohui Zhong 1, 2, 3, 4, 5 , Huichao He 1, 2, 3, 4, 5 , Minji Yang 1, 2, 3, 4, 5 , Gaili Ke 1, 2, 3, 4, 5 , Zongyan Zhao 6, 7, 8, 9, 10 , Faqin Dong 1, 2, 3, 4, 5 , Bowen Wang 1, 2, 3, 4, 5 , Yaqi Chen 1, 2, 3, 4, 5 , Xianying Shi 1, 2, 3, 4, 5 , Yong Zhou 10, 11, 12, 13, 14
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2018-05-02 00:00:00 , DOI: 10.1039/c8ta01377b Xiaohui Zhong 1, 2, 3, 4, 5 , Huichao He 1, 2, 3, 4, 5 , Minji Yang 1, 2, 3, 4, 5 , Gaili Ke 1, 2, 3, 4, 5 , Zongyan Zhao 6, 7, 8, 9, 10 , Faqin Dong 1, 2, 3, 4, 5 , Bowen Wang 1, 2, 3, 4, 5 , Yaqi Chen 1, 2, 3, 4, 5 , Xianying Shi 1, 2, 3, 4, 5 , Yong Zhou 10, 11, 12, 13, 14
Affiliation
BiVO4 is a promising photoanode material for photoelectrochemical water splitting, but its actual activity is hindered by the high energy surface states. Here, we report that In3+ can be used as a dopant to substitute the partial sites of Bi3+ in BiVO4 for modifying the surface states and improving the water oxidation activity of a BiVO4 nanoflake film. Among the In3+-doped BiVO4 film photoanodes, the 7% In3+-doped BiVO4 film shows optimal photoelectrochemical water oxidation activity. At 1.23 V vs. RHE, the 7% In3+-doped BiVO4 photoanode exhibits a photocurrent density of 1.56 mA cm−2 in 0.1 M Na2SO4, which is over 200% greater than that of the undoped BiVO4 photoanode. In3+-doping did not change the morphology, phase and band gap of BiVO4 obviously, but resulted in a positive shift of the flat band position and higher surface charge separation efficiency for water oxidation. Density functional theory calculations indicate that the surface energy of BiVO4 decreased after In3+-doping that involved more unsaturated electrons of the Bi atom in the Bi–O bonds, thus reducing the amount of exposed unsaturated Bi atoms and broken Bi–O bonds. Therefore, the enhanced water oxidation activity on the In3+-doped BiVO4 photoanode can be ascribed to In3+-doping that passivated the surface states of BiVO4 and thus inhibited the surface charge recombination.
中文翻译:
在3+掺杂的BiVO 4个光阳极与光电化学水氧化钝化表面状态†
BiVO 4是用于光电化学水分解的有前途的光阳极材料,但是其实际活性受到高能表面态的阻碍。在这里,我们报道In 3+可以用作掺杂剂,以替代BiVO 4中Bi 3+的部分位点,以修饰表面态并改善BiVO 4纳米片状薄膜的水氧化活性。在In 3+掺杂的BiVO 4薄膜光阳极中,7%In 3+掺杂的BiVO 4薄膜显示出最佳的光电化学水氧化活性。在的1.23V相对于RHE,7%的In 3+掺杂的BiVO 4光电阳极在0.1 M Na 2 SO 4中的光电流密度为1.56 mA cm -2,比未掺杂的BiVO 4光电阳极高200%以上。在3+掺杂中,BiVO 4的形态,相和带隙没有明显改变,但是导致了平带位置的正向移动和更高的水氧化表面电荷分离效率。密度泛函理论计算表明,In 3+后BiVO 4的表面能降低-掺杂涉及Bi-O键中更多的Bi原子不饱和电子,因此减少了暴露的不饱和Bi原子和断裂的Bi-O键的数量。因此,在In 3+掺杂的BiVO 4光电阳极上增强的水氧化活性可以归因于In 3+掺杂,其钝化了BiVO 4的表面状态,从而抑制了表面电荷的重组。
更新日期:2018-05-02
中文翻译:
在3+掺杂的BiVO 4个光阳极与光电化学水氧化钝化表面状态†
BiVO 4是用于光电化学水分解的有前途的光阳极材料,但是其实际活性受到高能表面态的阻碍。在这里,我们报道In 3+可以用作掺杂剂,以替代BiVO 4中Bi 3+的部分位点,以修饰表面态并改善BiVO 4纳米片状薄膜的水氧化活性。在In 3+掺杂的BiVO 4薄膜光阳极中,7%In 3+掺杂的BiVO 4薄膜显示出最佳的光电化学水氧化活性。在的1.23V相对于RHE,7%的In 3+掺杂的BiVO 4光电阳极在0.1 M Na 2 SO 4中的光电流密度为1.56 mA cm -2,比未掺杂的BiVO 4光电阳极高200%以上。在3+掺杂中,BiVO 4的形态,相和带隙没有明显改变,但是导致了平带位置的正向移动和更高的水氧化表面电荷分离效率。密度泛函理论计算表明,In 3+后BiVO 4的表面能降低-掺杂涉及Bi-O键中更多的Bi原子不饱和电子,因此减少了暴露的不饱和Bi原子和断裂的Bi-O键的数量。因此,在In 3+掺杂的BiVO 4光电阳极上增强的水氧化活性可以归因于In 3+掺杂,其钝化了BiVO 4的表面状态,从而抑制了表面电荷的重组。