Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Cobalt Phosphide Composite Encapsulated within N,P‐Doped Carbon Nanotubes for Synergistic Oxygen Evolution
Small ( IF 13.0 ) Pub Date : 2018-04-10 , DOI: 10.1002/smll.201800367 Hui Li 1 , Si-Min Xu 1 , Hong Yan 1 , Lan Yang 1 , Sailong Xu 1
Small ( IF 13.0 ) Pub Date : 2018-04-10 , DOI: 10.1002/smll.201800367 Hui Li 1 , Si-Min Xu 1 , Hong Yan 1 , Lan Yang 1 , Sailong Xu 1
Affiliation
Exploring highly efficient and stable oxygen evolution reaction (OER) electrocatalysts such as transition‐metal phosphides (TMPs) is critical to advancing renewable hydrogen fuel. TMP nanostructures typically involving binary or ternary TMPs tuned by cation or anion doping are suggested to be promising low‐cost and durable OER catalysts. Herein, the preparation of CoP/CoP2 composite nanoparticles encapsulated within N,P‐doped carbon nanotubes (CoP/CoP2@NPCNTs) is demonstrated as a synergistic electrocatalyst for OER via the calcination of a CoAl‐layered double hydroxide/melamine mixture and subsequent phosphorization. Facile visualization by scanning electron microscopy in conjunction with electron backscatter diffraction demonstrates the encapsulation of the CoP/CoP2 nanoparticles within the N,P‐codoped CNTs. Electrocatalytic evaluation shows that the composite electrode requires a low overpotential of 300 mV for the OER at 10 mA cm−2 in a 1.0 m KOH solution and, in particular, exhibits an excellent long‐term durability of ≈100 h, which is superior to that of the state‐of‐the‐art RuO2 electrocatalyst. Density functional theory calculations reveal that the synergistic effect of CoP and CoP2 can enhance the electrocatalytic performance. In addition, molecular dynamics simulations demonstrate that the generated O2 molecules can readily diffuse out of the CNTs. Both the effects give rise to the observed OER enhancement.
中文翻译:
磷化钴复合物封装在N,P掺杂的碳纳米管中以产生协同增氧作用
探索高效,稳定的析氧反应(OER)电催化剂,例如过渡金属磷化物(TMP),对于推进可再生氢燃料至关重要。TMP纳米结构通常涉及通过阳离子或阴离子掺杂调整的二元或三元TMP,被认为是有前途的低成本耐用的OER催化剂。在本文中,通过煅烧CoAl层状双氢氧化物/三聚氰胺混合物并经煅烧,证明了包封在N,P掺杂的碳纳米管(CoP / CoP 2 @NPCNTs)中的CoP / CoP 2复合纳米颗粒的制备是OER的协同电催化剂。随后的磷化。通过扫描电子显微镜与电子反向散射衍射的便捷可视化展示了CoP / CoP 2的封装N,P掺杂的CNT中的纳米颗粒。电催化评估显示,复合电极在1.0 m KOH溶液中10 mA cm -2的OER要求300 mV的低过电势,特别是具有≈100h的优异长期耐久性,优于最先进的RuO 2电催化剂的性能。密度泛函理论计算表明,CoP和CoP 2的协同作用可以增强电催化性能。此外,分子动力学模拟表明,生成的O 2分子可以很容易地从CNT中扩散出来。两种作用都导致观察到的OER增强。
更新日期:2018-04-10
中文翻译:
磷化钴复合物封装在N,P掺杂的碳纳米管中以产生协同增氧作用
探索高效,稳定的析氧反应(OER)电催化剂,例如过渡金属磷化物(TMP),对于推进可再生氢燃料至关重要。TMP纳米结构通常涉及通过阳离子或阴离子掺杂调整的二元或三元TMP,被认为是有前途的低成本耐用的OER催化剂。在本文中,通过煅烧CoAl层状双氢氧化物/三聚氰胺混合物并经煅烧,证明了包封在N,P掺杂的碳纳米管(CoP / CoP 2 @NPCNTs)中的CoP / CoP 2复合纳米颗粒的制备是OER的协同电催化剂。随后的磷化。通过扫描电子显微镜与电子反向散射衍射的便捷可视化展示了CoP / CoP 2的封装N,P掺杂的CNT中的纳米颗粒。电催化评估显示,复合电极在1.0 m KOH溶液中10 mA cm -2的OER要求300 mV的低过电势,特别是具有≈100h的优异长期耐久性,优于最先进的RuO 2电催化剂的性能。密度泛函理论计算表明,CoP和CoP 2的协同作用可以增强电催化性能。此外,分子动力学模拟表明,生成的O 2分子可以很容易地从CNT中扩散出来。两种作用都导致观察到的OER增强。