Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Surface Wetting-Driven Separation of Surfactant-Stabilized Water–Oil Emulsions
Langmuir ( IF 3.7 ) Pub Date : 2018-04-27 00:00:00 , DOI: 10.1021/acs.langmuir.7b04248 Qian Zhang 1, 2 , Lei Li 1 , Yanxiang Li 1 , Lixia Cao 1 , Chuanfang Yang 1
Langmuir ( IF 3.7 ) Pub Date : 2018-04-27 00:00:00 , DOI: 10.1021/acs.langmuir.7b04248 Qian Zhang 1, 2 , Lei Li 1 , Yanxiang Li 1 , Lixia Cao 1 , Chuanfang Yang 1
Affiliation
Four fluorocarbon polymers including polytetrafluoroethylene and polyvinylidene fluoride were coated on a stainless steel felt to separate emulsified water droplets from ultralow sulfur diesel (ULSD) fuels. The original fuel treated with clay to remove additives was additized again with four known surfactants including pentaerythrityoleate, (octadecadienoic acid) dipolymer, (octadecadienoic acid) tripolymer, and monoolein individually. The different surfactants adsorbed on the fuel–water interface reduce the interfacial intension with different intensities. The separation efficiency at various surfactant concentrations was used to evaluate the coalescence effect exerted by these coatings. It was found the separation was both surfactant- and coating-dependent. A fluoro-polyurethane coating (FC1) stood out to counteract the adverse effect of all the surfactants. Solid free energy was then measured using acid–base and Kaelble–Uy adhesion theories for all the coatings, but its correlation with coalescence was not found at all. Coating aging in surfactant-additized fuel on the coating’s water wettability was also examined to better understand how historical wetting affects separation. A tumbled model for fluorocarbons was identified that well-explained the continuous decline of the water contact angle on the FC1 coating in fuel. Subject to the challenge of the foreign environment, the fluoroalkyl chains of the polymer tilt to expose the carbonyl groups underneath, resulting in favored coalescence separation in the presence of surfactants.
中文翻译:
表面活性剂稳定的水-油乳液的表面润湿驱动分离
将包括聚四氟乙烯和聚偏二氟乙烯在内的四种碳氟化合物聚合物涂覆在不锈钢毡上,以将乳化的水滴与超低硫柴油(ULSD)燃料分离。用四种已知的表面活性剂分别对用粘土处理以去除添加剂的原始燃料进行添加,所述表面活性剂分别包括季戊四醇酸酯,(十八碳二烯酸)二聚物,(十八碳二烯酸)三聚物和单油精。吸附在燃料-水界面上的不同表面活性剂以不同的强度降低了界面强度。在各种表面活性剂浓度下的分离效率用于评估这些涂层所产生的聚结效果。发现分离既取决于表面活性剂又取决于涂层。氟-聚氨酯涂料(FC1)引人注目,以抵消所有表面活性剂的不利影响。然后使用酸碱和Kaelble-Uy附着力理论对所有涂层测量了固体自由能,但根本没有发现其与聚结的关系。还检查了添加表面活性剂的燃料中涂层的老化对涂层水润湿性的影响,以更好地了解历史润湿如何影响分离。确定了碳氟化合物的滚落模型,可以很好地解释燃料中FC1涂层上水接触角的连续下降。受到外来环境的挑战,聚合物的氟烷基链倾斜以暴露下面的羰基,从而在存在表面活性剂的情况下有利于聚结分离。然后使用酸碱和Kaelble-Uy附着力理论对所有涂层测量了固体自由能,但根本没有发现其与聚结的关系。还检查了添加表面活性剂的燃料中涂层的老化对涂层水润湿性的影响,以更好地了解历史润湿如何影响分离。确定了碳氟化合物的滚落模型,可以很好地解释燃料中FC1涂层上水接触角的连续下降。受到外来环境的挑战,聚合物的氟烷基链倾斜以暴露下面的羰基,从而在存在表面活性剂的情况下有利于聚结分离。然后使用酸碱和Kaelble-Uy附着力理论对所有涂层测量了固体自由能,但根本没有发现其与聚结的关系。还检查了添加表面活性剂的燃料中涂层的老化对涂层水润湿性的影响,以更好地了解历史润湿如何影响分离。确定了碳氟化合物的滚落模型,可以很好地解释燃料中FC1涂层上水接触角的连续下降。受到外来环境的挑战,聚合物的氟烷基链倾斜以暴露下面的羰基,从而在存在表面活性剂的情况下有利于聚结分离。还检查了添加表面活性剂的燃料中涂层的老化对涂层水润湿性的影响,以更好地了解历史润湿如何影响分离。确定了碳氟化合物的滚落模型,可以很好地解释燃料中FC1涂层上水接触角的连续下降。受到外来环境的挑战,聚合物的氟烷基链倾斜以暴露下面的羰基,从而在存在表面活性剂的情况下有利于聚结分离。还检查了添加表面活性剂的燃料中涂层的老化对涂层水润湿性的影响,以更好地了解历史润湿如何影响分离。确定了碳氟化合物的滚落模型,可以很好地解释燃料中FC1涂层上水接触角的连续下降。受到外来环境的挑战,聚合物的氟烷基链倾斜以暴露下面的羰基,从而在存在表面活性剂的情况下有利于聚结分离。
更新日期:2018-04-27
中文翻译:
表面活性剂稳定的水-油乳液的表面润湿驱动分离
将包括聚四氟乙烯和聚偏二氟乙烯在内的四种碳氟化合物聚合物涂覆在不锈钢毡上,以将乳化的水滴与超低硫柴油(ULSD)燃料分离。用四种已知的表面活性剂分别对用粘土处理以去除添加剂的原始燃料进行添加,所述表面活性剂分别包括季戊四醇酸酯,(十八碳二烯酸)二聚物,(十八碳二烯酸)三聚物和单油精。吸附在燃料-水界面上的不同表面活性剂以不同的强度降低了界面强度。在各种表面活性剂浓度下的分离效率用于评估这些涂层所产生的聚结效果。发现分离既取决于表面活性剂又取决于涂层。氟-聚氨酯涂料(FC1)引人注目,以抵消所有表面活性剂的不利影响。然后使用酸碱和Kaelble-Uy附着力理论对所有涂层测量了固体自由能,但根本没有发现其与聚结的关系。还检查了添加表面活性剂的燃料中涂层的老化对涂层水润湿性的影响,以更好地了解历史润湿如何影响分离。确定了碳氟化合物的滚落模型,可以很好地解释燃料中FC1涂层上水接触角的连续下降。受到外来环境的挑战,聚合物的氟烷基链倾斜以暴露下面的羰基,从而在存在表面活性剂的情况下有利于聚结分离。然后使用酸碱和Kaelble-Uy附着力理论对所有涂层测量了固体自由能,但根本没有发现其与聚结的关系。还检查了添加表面活性剂的燃料中涂层的老化对涂层水润湿性的影响,以更好地了解历史润湿如何影响分离。确定了碳氟化合物的滚落模型,可以很好地解释燃料中FC1涂层上水接触角的连续下降。受到外来环境的挑战,聚合物的氟烷基链倾斜以暴露下面的羰基,从而在存在表面活性剂的情况下有利于聚结分离。然后使用酸碱和Kaelble-Uy附着力理论对所有涂层测量了固体自由能,但根本没有发现其与聚结的关系。还检查了添加表面活性剂的燃料中涂层的老化对涂层水润湿性的影响,以更好地了解历史润湿如何影响分离。确定了碳氟化合物的滚落模型,可以很好地解释燃料中FC1涂层上水接触角的连续下降。受到外来环境的挑战,聚合物的氟烷基链倾斜以暴露下面的羰基,从而在存在表面活性剂的情况下有利于聚结分离。还检查了添加表面活性剂的燃料中涂层的老化对涂层水润湿性的影响,以更好地了解历史润湿如何影响分离。确定了碳氟化合物的滚落模型,可以很好地解释燃料中FC1涂层上水接触角的连续下降。受到外来环境的挑战,聚合物的氟烷基链倾斜以暴露下面的羰基,从而在存在表面活性剂的情况下有利于聚结分离。还检查了添加表面活性剂的燃料中涂层的老化对涂层水润湿性的影响,以更好地了解历史润湿如何影响分离。确定了碳氟化合物的滚落模型,可以很好地解释燃料中FC1涂层上水接触角的连续下降。受到外来环境的挑战,聚合物的氟烷基链倾斜以暴露下面的羰基,从而在存在表面活性剂的情况下有利于聚结分离。