当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Light as Trigger for Biocatalysis: Photonic Wiring of Flavin Adenine Dinucleotide-Dependent Glucose Dehydrogenase to Quantum Dot-Sensitized Inverse Opal TiO2 Architectures via Redox Polymers
ACS Catalysis ( IF 11.3 ) Pub Date : 2018-04-27 00:00:00 , DOI: 10.1021/acscatal.8b00951 Marc Riedel 1 , Wolfgang J. Parak 2 , Adrian Ruff 3 , Wolfgang Schuhmann 3 , Fred Lisdat 1
ACS Catalysis ( IF 11.3 ) Pub Date : 2018-04-27 00:00:00 , DOI: 10.1021/acscatal.8b00951 Marc Riedel 1 , Wolfgang J. Parak 2 , Adrian Ruff 3 , Wolfgang Schuhmann 3 , Fred Lisdat 1
Affiliation
The functional coupling of photoactive nanostructures with enzymes creates a strategy for the design of light-triggered biocatalysts. This study highlights the efficient wiring of flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase (FAD-GDH) to PbS quantum dot (QD)-sensitized inverse opal TiO2 electrodes (IO-TiO2) by means of an Os-complex-containing redox polymer for the light-driven glucose oxidation. For the construction of IO-TiO2 scaffolds, a template approach has been developed, enabling the tunability of the surface area and a high loading capacity for the integration of QDs, redox polymer, and enzyme. The biohybrid signal chain can be switched on with light, generating charge carriers within the QDs, triggering a multistep electron-transfer cascade from the enzyme toward the redox polymer via the QDs and finally to the IO-TiO2 electrode. The resulting anodic photocurrent can be modulated by the potential, the excitation intensity, and the glucose concentration, providing a new degree of freedom for the control of biocatalyic reactions at electrode interfaces. Maximum photocurrents of 207 μA cm–2 have been achieved in the presence of glucose, and a first gain of electrons from the biocatalytic reaction is found at −540 mV vs Ag/AgCl, 1 M KCl, which lowers the working potential by >500 mV as compared to light-insensitive electrodes. The biohybrid system combines the advantages of a high surface area of IO films, an efficient charge-carrier generation and separation at the QDs/TiO2 interface, and an efficient wiring of FAD-GDH to the QDs via a redox polymer, resulting in photo(bio)anodes of high performance for sensing and power supply.
中文翻译:
光作为生物催化的触发点:通过氧化还原聚合物,将黄素腺嘌呤二核苷酸依赖性葡萄糖脱氢酶的光子布线连接至量子点敏感的反蛋白石TiO 2结构。
光活性纳米结构与酶的功能偶联为光触发生物催化剂的设计创造了策略。这项研究强调了通过Os-络合物-电极将黄素腺嘌呤二核苷酸(FAD)依赖性葡萄糖脱氢酶(FAD-GDH)有效连接到PbS量子点(QD)致敏的反蛋白石TiO 2电极(IO-TiO 2)。含氧化还原聚合物,用于光驱动的葡萄糖氧化。用于IO-TiO 2的构造支架,已经开发出一种模板方法,可实现表面积的可调性和QD,氧化还原聚合物和酶整合的高负载能力。可以用光打开生物混合信号链,在量子点内生成电荷载流子,触发从酶经由量子点到氧化还原聚合物并最终到达IO-TiO 2电极的多步电子转移级联。可以通过电势,激发强度和葡萄糖浓度来调节所得的阳极光电流,从而为电极界面处的生物催化反应的控制提供了新的自由度。最大光电流为207μAcm –2已经在葡萄糖存在下获得了电子,并且从生物催化反应中获得的电子的第一增益为-540 mV,相对于Ag / AgCl,1 M KCl,与不感光电极相比,其工作电位降低了> 500 mV 。生物混合系统结合了以下优点:IO膜的表面积大,在QDs / TiO 2界面处有效的电荷载流子产生和分离以及FAD-GDH通过氧化还原聚合物到QD的有效布线,从而产生光高性能(生物)阳极,用于传感和电源。
更新日期:2018-04-27
中文翻译:
光作为生物催化的触发点:通过氧化还原聚合物,将黄素腺嘌呤二核苷酸依赖性葡萄糖脱氢酶的光子布线连接至量子点敏感的反蛋白石TiO 2结构。
光活性纳米结构与酶的功能偶联为光触发生物催化剂的设计创造了策略。这项研究强调了通过Os-络合物-电极将黄素腺嘌呤二核苷酸(FAD)依赖性葡萄糖脱氢酶(FAD-GDH)有效连接到PbS量子点(QD)致敏的反蛋白石TiO 2电极(IO-TiO 2)。含氧化还原聚合物,用于光驱动的葡萄糖氧化。用于IO-TiO 2的构造支架,已经开发出一种模板方法,可实现表面积的可调性和QD,氧化还原聚合物和酶整合的高负载能力。可以用光打开生物混合信号链,在量子点内生成电荷载流子,触发从酶经由量子点到氧化还原聚合物并最终到达IO-TiO 2电极的多步电子转移级联。可以通过电势,激发强度和葡萄糖浓度来调节所得的阳极光电流,从而为电极界面处的生物催化反应的控制提供了新的自由度。最大光电流为207μAcm –2已经在葡萄糖存在下获得了电子,并且从生物催化反应中获得的电子的第一增益为-540 mV,相对于Ag / AgCl,1 M KCl,与不感光电极相比,其工作电位降低了> 500 mV 。生物混合系统结合了以下优点:IO膜的表面积大,在QDs / TiO 2界面处有效的电荷载流子产生和分离以及FAD-GDH通过氧化还原聚合物到QD的有效布线,从而产生光高性能(生物)阳极,用于传感和电源。