当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unique Proton Transportation Pathway in a Robust Inorganic Coordination Polymer Leading to Intrinsically High and Sustainable Anhydrous Proton Conductivity
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2018-04-25 , DOI: 10.1021/jacs.8b02598
Daxiang Gui 1 , Xing Dai 1 , Zetian Tao 2 , Tao Zheng 1 , Xiangxiang Wang 1 , Mark A. Silver 1 , Jie Shu 3 , Lanhua Chen 1 , Yanlong Wang 1 , Tiantian Zhang 3 , Jian Xie 1 , Lin Zou 4 , Yuanhua Xia 4 , Jujia Zhang 5 , Jin Zhang 5 , Ling Zhao 6 , Juan Diwu 1 , Ruhong Zhou 1, 7 , Zhifang Chai 1 , Shuao Wang 1
Affiliation  

Although comprehensive progress has been made in the area of coordination polymer (CP)/metal-organic framework (MOF)-based proton-conducting materials over the past decade, searching for a CP/MOF with stable, intrinsic, high anhydrous proton conductivity that can be directly used as a practical electrolyte in an intermediate-temperature proton-exchange membrane fuel cell assembly for durable power generation remains a substantial challenge. Here, we introduce a new proton-conducting CP, (NH4)3[Zr(H2/3PO4)3] (ZrP), which consists of one-dimensional zirconium phosphate anionic chains and fully ordered charge-balancing NH4+ cations. X-ray crystallography, neutron powder diffraction, and variable-temperature solid-state NMR spectroscopy suggest that protons are disordered within an inherent hydrogen-bonded infinite chain of acid-base pairs (N-H···O-P), leading to a stable anhydrous proton conductivity of 1.45 × 10-3 S·cm-1 at 180 °C, one of the highest values among reported intermediate-temperature proton-conducting materials. First-principles and quantum molecular dynamics simulations were used to directly visualize the unique proton transport pathway involving very efficient proton exchange between NH4+ and phosphate pairs, which is distinct from the common guest encapsulation/dehydration/superprotonic transition mechanisms. ZrP as the electrolyte was further assembled into a H2/O2 fuel cell, which showed a record-high electrical power density of 12 mW·cm-2 at 180 °C among reported cells assembled from crystalline solid electrolytes, as well as a direct methanol fuel cell for the first time to demonstrate real applications. These cells were tested for over 15 h without notable power loss.

中文翻译:

坚固的无机配位聚合物中独特的质子传输途径导致本质上高且可持续的无水质子电导率

尽管过去十年在配位聚合物(CP)/金属有机骨架(MOF)基质子传导材料领域取得了全面进展,但正在寻找具有稳定、本征、高无水质子电导率的 CP/MOF可以直接用作中温质子交换膜燃料电池组件中的实用电解质以实现持久发电仍然是一项重大挑战。在这里,我们介绍了一种新的质子传导 CP,(NH4)3[Zr(H2/3PO4)3] (ZrP),它由一维磷酸锆阴离子链和完全有序的电荷平衡 NH4+ 阳离子组成。X 射线晶体学、中子粉末衍射和变温固态 NMR 光谱表明,质子在酸碱对(NH···OP)的固有氢键无限链中是无序的,导致在 180 °C 时稳定的无水质子电导率为 1.45 × 10-3 S·cm-1,这是已报道的中温质子传导材料中最高的值之一。第一性原理和量子分子动力学模拟用于直接可视化独特的质子传输途径,涉及 NH4+ 和磷酸盐对之间非常有效的质子交换,这与常见的客体封装/脱水/超质子转换机制不同。ZrP 作为电解质进一步组装成 H2/O2 燃料电池,在报道的由结晶固体电解质和直接甲醇组装的电池中,在 180°C 下显示出创纪录的 12 mW·cm-2 的电功率密度燃料电池首次展示实际应用。这些电池经过 15 小时以上的测试,没有明显的功率损失。
更新日期:2018-04-25
down
wechat
bug