当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Starch-Derived Hierarchical Porous Carbon with Controlled Porosity for High Performance Supercapacitors
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2018-04-24 00:00:00 , DOI: 10.1021/acssuschemeng.7b04459
Jinhui Cao 1 , Chunyu Zhu 1, 2 , Yoshitaka Aoki 1, 2 , Hiroki Habazaki 1, 2
Affiliation  

The development of green and clean synthetic techniques to produce carbon materials for energy storage and conversion applications has motivated researchers to use sustainable biomass. In this study, hierarchical porous carbon (HPC) with very high specific surface area and controlled porosity is synthesized by a novel and facile method, which employs an exothermic pyrolysis process of starch–magnesium nitrate raw materials with subsequent high temperature thermal treatment and acid washing. The biomass starch acts as both a reductant and carbon source, while magnesium nitrate is an oxidant and provides MgO template as pore creator. The vigorous exothermic pyrolysis of starch–magnesium nitrate mixture introduces [email protected] precursor with a highly 3D porous network containing meso- and macropores. After MgO template is removed, plenty of micro- and mesopores are further created. Experimental parameters including calcination temperature, starch–nitrate ratio, and magnesium salt species are comprehensively evaluated. The HPC shows a very large specific surface area up to about 2300 m2 g–1 and a hierarchical porous architecture composed of interconnected micro-, meso- and macropores. As an electrode material for supercapacitors, the HPC exhibits high specific capacitance (229 F g–1 at 1 A g–1 in a 6 M KOH electrolyte), good rate capability (211 F g–1 at even 10 A g–1) and outstanding cycling stability (94% capacitance retention after 10 000 cycles at 2 A g–1). The superior electrochemical performance of the HPC stems from both high surface area and the hierarchical multiporous structure, which provides an accessible pathway for electrolyte transport. These results demonstrate a very effective and low-cost method for scalable preparation of HPC using green biomass carbon source for supercapacitors, which also has potential applications such as adsorbent for water/gas treatment.

中文翻译:

适用于高性能超级电容器的,可控孔隙度的淀粉衍生的分级多孔碳

绿色和清洁合成技术的发展,以生产用于能量存储和转换的碳材料,促使研究人员使用可持续的生物质。在这项研究中,通过一种新颖而又简便的方法,合成了具有非常高的比表面积和可控孔隙率的分级多孔碳(HPC),该方法采用了淀粉-硝酸镁原料的放热热解工艺,随后进行了高温热处理和酸洗。生物质淀粉既充当还原剂又充当碳源,而硝酸镁充当氧化剂,并提供MgO模板作为造孔剂。淀粉-硝酸镁混合物的剧烈放热热解引入[受电子邮件保护的]前体,后者具有包含中孔和大孔的高度3D多孔网络。删除MgO模板后,大量的微孔和中孔被进一步产生。综合评估了煅烧温度,淀粉-硝酸盐比例和镁盐种类等实验参数。HPC的最大比表面积高达2300 m2 g –1和由相互连接的微孔,中孔和大孔组成的分层多孔结构。作为超级电容器的电极材料时,表现出HPC高的比电容(229 F G -1 1 A G -1在6M的KOH电解质),良好的倍率性能(211 F G -1在甚至10 A G -1)和出色的循环稳定性(在2 A g –1的条件下进行10 000次循环后,电容保持率为94%)。HPC出色的电化学性能源于高表面积和分层的多孔结构,这为电解质的运输提供了可及的途径。这些结果表明,使用绿色生物质碳源作为超级电容器可大规模制备HPC的一种非常有效且低成本的方法,该方法还具有潜在的应用,例如用于水/气处理的吸附剂。
更新日期:2018-04-24
down
wechat
bug