当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Suppressing the Polysulfide Shuttle Effect by Heteroatom-Doping for High-Performance Lithium–Sulfur Batteries
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2018-04-23 00:00:00 , DOI: 10.1021/acssuschemeng.8b00273 Manfang Chen 1 , Shu Zhao 2 , Shouxin Jiang 1 , Cheng Huang 1 , Xianyou Wang 1 , Zhenhua Yang 2 , Kaixiong Xiang 1 , Yan Zhang 1
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2018-04-23 00:00:00 , DOI: 10.1021/acssuschemeng.8b00273 Manfang Chen 1 , Shu Zhao 2 , Shouxin Jiang 1 , Cheng Huang 1 , Xianyou Wang 1 , Zhenhua Yang 2 , Kaixiong Xiang 1 , Yan Zhang 1
Affiliation
In order to restrict the polysulfide shuttle effect and enhance sulfur utilization of lithium–sulfur batteries (LSBs) especially at low charge/discharge rates, a facile hydrothermal synthesis and subsequent heating melting treatment are used to synthesize the heteroatom-doped carbon nanotubes/sulfur composite cathode. The composition analysis and structure characteristics of samples are examined by X-ray photoelectron spectroscopy, X-ray powder diffraction, and transmission electron microscopy. The electrochemical performances of samples are measured by cyclic voltammetry and charge/discharge experiments. The results show that N, B, S tridoped active carbon nanotubes (ACNTs) with abundant mesoporous structure enable fast Li+ transmittal and provide strong polysulfide adsorption ability. More importantly, they offer enough mechanical strength to support high sulfur loading (77 wt %) that maximizes their chemical role and can accommodate large volume changes. The N, B, S tridoped ACNTs/S composite exhibits a superb incipient capacity of 1166 mAh/g-S at 0.3 C and large reversible capacity of 881 mAh/g-S at the 700th cycle. To further promote the cyclic lifespan of LSB, the as-prepared N, B, S tridoped ACNTs acted as both sulfur matrix and spring functional layer and achieved a large reversible specific capacity of about 713 mAh/g-S at the 1400th cycle at lofty current density of 0.5 C with a slow capacity decay of 0.014% 1/cycle and a higher sulfur loading of 90 wt %. Accordingly, reasonable design for the heteroatom doping element in carbon material and separator modification will be distinctly vital for enhancing the electrochemical performance of the LSB and boosting its industrial application.
中文翻译:
高性能锂硫电池杂原子掺杂抑制多硫化物穿梭效应
为了限制多硫化物的穿梭效应并提高锂硫电池(LSB)的硫利用率,特别是在低充放电率的情况下,采用便捷的水热合成和随后的加热熔融处理来合成杂原子掺杂的碳纳米管/硫复合物。阴极。通过X射线光电子能谱,X射线粉末衍射和透射电子显微镜检查样品的组成分析和结构特征。通过循环伏安法和充电/放电实验测量样品的电化学性能。结果表明,具有丰富的介孔结构的N,B,S三掺杂活性碳纳米管(ACNT)可以实现快速的Li +传递并提供强大的多硫化物吸附能力。更重要的是,它们提供足够的机械强度来支持高硫负载(77 wt%),从而最大化其化学作用并可以适应较大的体积变化。N,B,S三掺杂ACNTs / S复合材料在0.3 C时表现出极好的初始容量,为1166 mAh / gS,在第700个循环中表现出881 mAh / gS的大可逆容量。为了进一步提高LSB的循环寿命,所制备的N,B,S三掺杂ACNT既充当硫基质,又充当弹簧功能层,并且在高电流密度下在第1400次循环时实现了约713 mAh / gS的大可逆比容量。 0.5 C时,缓慢的容量衰减0.014%1 /循环,较高的硫负载量为90 wt%。因此,
更新日期:2018-04-23
中文翻译:
高性能锂硫电池杂原子掺杂抑制多硫化物穿梭效应
为了限制多硫化物的穿梭效应并提高锂硫电池(LSB)的硫利用率,特别是在低充放电率的情况下,采用便捷的水热合成和随后的加热熔融处理来合成杂原子掺杂的碳纳米管/硫复合物。阴极。通过X射线光电子能谱,X射线粉末衍射和透射电子显微镜检查样品的组成分析和结构特征。通过循环伏安法和充电/放电实验测量样品的电化学性能。结果表明,具有丰富的介孔结构的N,B,S三掺杂活性碳纳米管(ACNT)可以实现快速的Li +传递并提供强大的多硫化物吸附能力。更重要的是,它们提供足够的机械强度来支持高硫负载(77 wt%),从而最大化其化学作用并可以适应较大的体积变化。N,B,S三掺杂ACNTs / S复合材料在0.3 C时表现出极好的初始容量,为1166 mAh / gS,在第700个循环中表现出881 mAh / gS的大可逆容量。为了进一步提高LSB的循环寿命,所制备的N,B,S三掺杂ACNT既充当硫基质,又充当弹簧功能层,并且在高电流密度下在第1400次循环时实现了约713 mAh / gS的大可逆比容量。 0.5 C时,缓慢的容量衰减0.014%1 /循环,较高的硫负载量为90 wt%。因此,