当前位置:
X-MOL 学术
›
Inorg. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Toward Rechargeable Persistent Luminescence for the First and Third Biological Windows via Persistent Energy Transfer and Electron Trap Redistribution
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2018-04-20 00:00:00 , DOI: 10.1021/acs.inorgchem.8b00218 Jian Xu 1 , Daisuke Murata 1 , Jumpei Ueda 1 , Bruno Viana 2, 3 , Setsuhisa Tanabe 1
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2018-04-20 00:00:00 , DOI: 10.1021/acs.inorgchem.8b00218 Jian Xu 1 , Daisuke Murata 1 , Jumpei Ueda 1 , Bruno Viana 2, 3 , Setsuhisa Tanabe 1
Affiliation
Persistent luminescence (PersL) imaging without real-time external excitation has been regarded as the next generation of autofluorescence-free optical imaging technology. However, to achieve improved imaging resolution and deep tissue penetration, developing new near-infrared (NIR) persistent phosphors with intense and long duration PersL over 1000 nm is still a challenging but urgent task in this field. Herein, making use of the persistent energy transfer process from Cr3+ to Er3+, we report a novel garnet persistent phosphor of Y3Al2Ga3O12 codoped with Er3+ and Cr3+ (YAGG:Er–Cr), which shows intense Cr3+ PersL (∼690 nm) in the deep red region matching well with the first biological window (NIR-I, 650–950 nm) and Er3+ PersL (∼1532 nm) in the NIR region matching well with the third biological window (NIR-III, 1500–1800 nm). The optical imaging through raw-pork tissues (thickness of 1 cm) suggests that the emission band of Er3+ can achieve higher spatial resolution and more accurate signal location than that of Cr3+ due to the reduced light scattering at longer wavelengths. Furthermore, by utilizing two independent electron traps with two different trap depths in YAGG:Er–Cr, the Cr3+/Er3+ PersL can even be recharged in situ by photostimulation with 660 nm LED thanks to the redistribution of trapped electrons from the deep trap to the shallow one. Our results serve as a guide in developing promising NIR (>1000 nm) persistent phosphors for long-term optical imaging.
中文翻译:
通过持久性能量转移和电子陷阱重新分布实现第一和第三生物窗口的可充电持久性发光
无需实时外部激发的持续发光(PersL)成像已被视为下一代无自发荧光的光学成像技术。但是,要获得更高的成像分辨率和深层组织穿透力,开发新型的近红外(NIR)持久性磷光体并在1000 nm以上具有持久且持久的PersL仍然是该领域的一项艰巨而紧迫的任务。在此,我们利用从Cr 3+到Er 3+的持续能量转移过程,报道了一种新型的石榴石Y 3 Al 2 Ga 3 O 12与Er 3+和Cr 3+共掺杂的石榴石持久性磷光体(YAG G:Er– Cr),这表明Cr含量高深红色区域中的3+ PersL(〜690 nm)与第一个生物学窗(NIR- 1,650–950 nm)很好地匹配,而近红外区域中的Er 3+ PersL(〜1532 nm)与第三种生物窗口很好的匹配。窗口(NIR-III,1500–1800 nm)。通过生猪肉组织的光学成像(厚度为1 cm)表明,由于在较长波长处的光散射减少,与Cr 3+相比,Er 3+的发射带可以实现更高的空间分辨率和更精确的信号定位。此外,通过在YAG G中利用两个具有不同陷阱深度的独立电子陷阱:Er–Cr,Cr 3+ / Er 3+由于捕获的电子从深陷阱向浅陷阱的重新分布,PersL甚至可以通过660 nm LED的光刺激原位充电。我们的结果可为开发有前途的NIR(> 1000 nm)持久性荧光粉用于长期光学成像提供指导。
更新日期:2018-04-20
中文翻译:
通过持久性能量转移和电子陷阱重新分布实现第一和第三生物窗口的可充电持久性发光
无需实时外部激发的持续发光(PersL)成像已被视为下一代无自发荧光的光学成像技术。但是,要获得更高的成像分辨率和深层组织穿透力,开发新型的近红外(NIR)持久性磷光体并在1000 nm以上具有持久且持久的PersL仍然是该领域的一项艰巨而紧迫的任务。在此,我们利用从Cr 3+到Er 3+的持续能量转移过程,报道了一种新型的石榴石Y 3 Al 2 Ga 3 O 12与Er 3+和Cr 3+共掺杂的石榴石持久性磷光体(YAG G:Er– Cr),这表明Cr含量高深红色区域中的3+ PersL(〜690 nm)与第一个生物学窗(NIR- 1,650–950 nm)很好地匹配,而近红外区域中的Er 3+ PersL(〜1532 nm)与第三种生物窗口很好的匹配。窗口(NIR-III,1500–1800 nm)。通过生猪肉组织的光学成像(厚度为1 cm)表明,由于在较长波长处的光散射减少,与Cr 3+相比,Er 3+的发射带可以实现更高的空间分辨率和更精确的信号定位。此外,通过在YAG G中利用两个具有不同陷阱深度的独立电子陷阱:Er–Cr,Cr 3+ / Er 3+由于捕获的电子从深陷阱向浅陷阱的重新分布,PersL甚至可以通过660 nm LED的光刺激原位充电。我们的结果可为开发有前途的NIR(> 1000 nm)持久性荧光粉用于长期光学成像提供指导。