当前位置:
X-MOL 学术
›
Mater. Today
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Piezoelectric properties in two-dimensional materials: Simulations and experiments
Materials Today ( IF 21.1 ) Pub Date : 2018-07-01 , DOI: 10.1016/j.mattod.2018.01.031
Ronan Hinchet , Usman Khan , Christian Falconi , Sang-Woo Kim
Materials Today ( IF 21.1 ) Pub Date : 2018-07-01 , DOI: 10.1016/j.mattod.2018.01.031
Ronan Hinchet , Usman Khan , Christian Falconi , Sang-Woo Kim
![]() |
Abstract The piezoelectric effect, discovered in 1880 by Jacques and Pierre Curie, effectively allows to transduce signals from the mechanical domain to the electrical domain and vice versa. For this reason, piezoelectric devices are already ubiquitous, including, for instance, quartz oscillators, mechanical actuators with sub-atomic resolution and microbalances. However, the ability to synthesize two-dimensional (2D) materials may enable the fabrication of innovative devices with unprecedented performance. For instance, many materials which are not piezoelectric in their bulk form become piezoelectric when reduced to a single atomic layer; moreover, since all the atoms belong to the surface, piezoelectricity can be effectively engineered by proper surface modifications. As additional advantages, 2D materials are strong, flexible, easy to be co-integrated with conventional integrated circuits or micro-electromechanical systems and, in comparison with bulk or quasi-1D materials, easier to be simulated at the atomistic level. Here, we review the state of the art on 2D piezoelectricity, with reference to both computational predictions and experimental characterization. Because of their unique advantages, we believe 2D piezoelectric materials will substantially expand the applications of piezoelectricity.
中文翻译:
二维材料的压电特性:模拟和实验
摘要 Jacques 和 Pierre Curie 在 1880 年发现的压电效应可以有效地将信号从机械域转换到电域,反之亦然。出于这个原因,压电设备已经无处不在,例如,包括石英振荡器、具有亚原子分辨率的机械致动器和微量天平。然而,合成二维 (2D) 材料的能力可能使制造具有前所未有性能的创新设备成为可能。例如,许多在块体形式下不是压电的材料在还原为单个原子层时会变成压电材料;此外,由于所有原子都属于表面,因此可以通过适当的表面改性有效地设计压电性。作为额外的优势,二维材料坚固、灵活、易于与传统集成电路或微机电系统共集成,与块状或准一维材料相比,更易于在原子级进行模拟。在这里,我们参考计算预测和实验表征回顾了二维压电的最新技术。由于其独特的优势,我们相信二维压电材料将大大扩展压电的应用。
更新日期:2018-07-01
中文翻译:

二维材料的压电特性:模拟和实验
摘要 Jacques 和 Pierre Curie 在 1880 年发现的压电效应可以有效地将信号从机械域转换到电域,反之亦然。出于这个原因,压电设备已经无处不在,例如,包括石英振荡器、具有亚原子分辨率的机械致动器和微量天平。然而,合成二维 (2D) 材料的能力可能使制造具有前所未有性能的创新设备成为可能。例如,许多在块体形式下不是压电的材料在还原为单个原子层时会变成压电材料;此外,由于所有原子都属于表面,因此可以通过适当的表面改性有效地设计压电性。作为额外的优势,二维材料坚固、灵活、易于与传统集成电路或微机电系统共集成,与块状或准一维材料相比,更易于在原子级进行模拟。在这里,我们参考计算预测和实验表征回顾了二维压电的最新技术。由于其独特的优势,我们相信二维压电材料将大大扩展压电的应用。