当前位置:
X-MOL 学术
›
Nano Energy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Silicon(lithiated)–sulfur full cells with porous silicon anode shielded by Nafion against polysulfides to achieve high capacity and energy density
Nano Energy ( IF 16.8 ) Pub Date : 2015-11-22 15:40:45 Chenfei Shen, Mingyuan Ge, Anyi Zhang, Xin Fang, Yihang Liu, Jiepeng Rong, Chongwu Zhou
Nano Energy ( IF 16.8 ) Pub Date : 2015-11-22 15:40:45 Chenfei Shen, Mingyuan Ge, Anyi Zhang, Xin Fang, Yihang Liu, Jiepeng Rong, Chongwu Zhou
Lithium-ion batteries have attracted great attention as one of the most versatile electrochemical energy storage devices. However, to meet the ever-growing energy needs for wide applications, further improvements on energy density of batteries are expected, which requires the development of innovative high-energy electrode materials. Silicon (Si) and sulfur (S) are two promising candidates and have been studied intensively as anode and cathode materials in lithium-ion batteries. Nevertheless, the excellent performance achieved with Li–Si and Li–S half cells usually does not easily translate to high-performance Si–S full cell. Here, we will discuss the challenges in the Si–S full cell integration, and a failure mechanism of Si–S full cell is proposed, which is due to the spontaneous reaction between Si (and lithiated Si) and polysulfides. On this basis, we report one prototype of Si-S full cells using lithiated Nafion-coated porous Si as anode and sulfur as cathode, and our study on the functionality of Nafion in shielding Si from reaction with polysulfides. With optimized mass ratio between sulfur and silicon, the full cell yields specific capacity of 330mAh/g and energy density of 590Wh/kg after 100 cycles based on the total mass of sulfur and silicon. The achieved energy density is more than 2 times higher than commercially available lithium-ion batteries. The investigation of issues in Si–S full cell research and the proposed full cell prototype will shed light on the development of next-generation lithium-ion batteries.
中文翻译:
硅(锂化)-硫全电池,其多孔硅阳极被Nafion屏蔽,免受多硫化物影响,以实现高容量和高能量密度
锂离子电池作为最通用的电化学能量存储设备之一已引起了极大的关注。然而,为了满足广泛应用中不断增长的能量需求,期望电池能量密度的进一步提高,这需要开发创新的高能量电极材料。硅(Si)和硫(S)是两个有前途的候选物,并且已作为锂离子电池的正极和负极材料进行了深入研究。尽管如此,使用Li-Si和Li-S半电池实现的出色性能通常不容易转化为高性能Si-S满电池。在这里,我们将讨论Si–S全电池集成中的挑战,并提出了Si–S全电池的故障机制,这是由于Si(和锂化的Si)与多硫化物之间的自发反应所致。在此基础上,我们报道了一个以锂化的Nafion涂层多孔Si为阳极,以硫为阴极的Si-S全电池原型,并研究了Nafion在保护Si免受与多硫化物反应中的功能。通过优化硫和硅之间的质量比,基于硫和硅的总质量,整个电池在100次循环后可产生330mAh / g的比容量和590Wh / kg的能量密度。所获得的能量密度是市售锂离子电池的2倍以上。Si-S全电池研究中的问题调查和拟议的全电池原型将为下一代锂离子电池的开发提供启发。以及我们对Nafion在保护Si免受与多硫化物反应中的功能的研究。通过优化硫和硅之间的质量比,基于硫和硅的总质量,整个电池在100次循环后可产生330mAh / g的比容量和590Wh / kg的能量密度。所获得的能量密度是市售锂离子电池的2倍以上。Si-S全电池研究中的问题调查和拟议的全电池原型将为下一代锂离子电池的开发提供启发。以及我们对Nafion在保护Si免受与多硫化物反应中的功能的研究。通过优化硫和硅之间的质量比,基于硫和硅的总质量,整个电池在100次循环后可产生330mAh / g的比容量和590Wh / kg的能量密度。所获得的能量密度是市售锂离子电池的2倍以上。Si-S全电池研究中的问题调查和拟议的全电池原型将为下一代锂离子电池的开发提供启发。所获得的能量密度是市售锂离子电池的2倍以上。Si-S全电池研究中的问题调查和拟议的全电池原型将为下一代锂离子电池的开发提供启发。所获得的能量密度是市售锂离子电池的2倍以上。Si-S全电池研究中的问题调查和拟议的全电池原型将为下一代锂离子电池的开发提供启发。
更新日期:2015-11-23
中文翻译:
硅(锂化)-硫全电池,其多孔硅阳极被Nafion屏蔽,免受多硫化物影响,以实现高容量和高能量密度
锂离子电池作为最通用的电化学能量存储设备之一已引起了极大的关注。然而,为了满足广泛应用中不断增长的能量需求,期望电池能量密度的进一步提高,这需要开发创新的高能量电极材料。硅(Si)和硫(S)是两个有前途的候选物,并且已作为锂离子电池的正极和负极材料进行了深入研究。尽管如此,使用Li-Si和Li-S半电池实现的出色性能通常不容易转化为高性能Si-S满电池。在这里,我们将讨论Si–S全电池集成中的挑战,并提出了Si–S全电池的故障机制,这是由于Si(和锂化的Si)与多硫化物之间的自发反应所致。在此基础上,我们报道了一个以锂化的Nafion涂层多孔Si为阳极,以硫为阴极的Si-S全电池原型,并研究了Nafion在保护Si免受与多硫化物反应中的功能。通过优化硫和硅之间的质量比,基于硫和硅的总质量,整个电池在100次循环后可产生330mAh / g的比容量和590Wh / kg的能量密度。所获得的能量密度是市售锂离子电池的2倍以上。Si-S全电池研究中的问题调查和拟议的全电池原型将为下一代锂离子电池的开发提供启发。以及我们对Nafion在保护Si免受与多硫化物反应中的功能的研究。通过优化硫和硅之间的质量比,基于硫和硅的总质量,整个电池在100次循环后可产生330mAh / g的比容量和590Wh / kg的能量密度。所获得的能量密度是市售锂离子电池的2倍以上。Si-S全电池研究中的问题调查和拟议的全电池原型将为下一代锂离子电池的开发提供启发。以及我们对Nafion在保护Si免受与多硫化物反应中的功能的研究。通过优化硫和硅之间的质量比,基于硫和硅的总质量,整个电池在100次循环后可产生330mAh / g的比容量和590Wh / kg的能量密度。所获得的能量密度是市售锂离子电池的2倍以上。Si-S全电池研究中的问题调查和拟议的全电池原型将为下一代锂离子电池的开发提供启发。所获得的能量密度是市售锂离子电池的2倍以上。Si-S全电池研究中的问题调查和拟议的全电池原型将为下一代锂离子电池的开发提供启发。所获得的能量密度是市售锂离子电池的2倍以上。Si-S全电池研究中的问题调查和拟议的全电池原型将为下一代锂离子电池的开发提供启发。