当前位置:
X-MOL 学术
›
Inorg. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mechanism of N–N Bond Formation by Transition Metal–Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2018-04-02 00:00:00 , DOI: 10.1021/acs.inorgchem.7b02333
Casey Van Stappen 1 , Nicolai Lehnert 1
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2018-04-02 00:00:00 , DOI: 10.1021/acs.inorgchem.7b02333
Casey Van Stappen 1 , Nicolai Lehnert 1
Affiliation
![]() |
Nitric oxide (NO) has a number of important biological functions, including nerve signaling transduction, blood pressure control, and, at higher concentrations, immune defense. A number of pathogenic bacteria have developed methods of degrading this toxic molecule through the use of flavodiiron nitric oxide reductases (FNORs), which utilize a nonheme diiron active site to reduce NO → N2O. The well-characterized diiron model complex [Fe2(BPMP)(OPr)(NO)2]2+ (BPMP− = 2,6-bis[(bis(2- pyridylmethyl)amino)methyl]-4-methylphenolate), which mimics both the active site structure and reactivity of these enzymes, offers key insight into the mechanism of FNORs. Presently, we have used computational methods to elucidate a coherent reaction mechanism that shows how one and two-electron reduction of this complex induces N–N bond formation and N2O generation, while the parent complex remains stable. The initial formation of a N–N bond to generate hyponitrite (N2O22–) follows a radical-type coupling mechanism, which requires strong Fe–NO π-interactions to be overcome to effectively oxidize the iron centers. Hyponitrite formation provides the largest activation barrier with ΔG‡ = 7–8 kcal/mol (average of several functionals) in the two-electron, super-reduced mechanism. This is followed by the formation of a N2O22– complex with a novel binding mode for nonheme diiron systems, allowing for the facile release of N2O with the assistance of a carboxylate shift. This provides sufficient thermodynamic driving force for the reaction to proceed via N2O formation alone. Surprisingly, the one-electron “semireduced” mechanism is predicted to be competitive with the super-reduced mechanism. This is due to the asymmetry imparted by the BPMP– ligand, allowing a one-electron reduction to overcome one of the primary Fe–NO π-interactions. Generally, mediation of N2O formation by high-spin [{M-NO−}]2 cores depends on the ease of oxidizing the M centers and breaking of the M–NO π-bonds to formally generate a “full” 3NO– unit, allowing for the critical step of N–N bond formation to proceed (via a radical-type coupling mechanism).
中文翻译:
过渡金属-亚硝酰基配合物形成N–N键的机理:模拟黄酮二铁一氧化氮还原酶
一氧化氮(NO)具有许多重要的生物学功能,包括神经信号转导,血压控制以及更高浓度的免疫防御。一些病原性细菌的已开发通过使用flavodiiron氧化氮还原酶(FNORs),其利用非血红素二铁的活性位点,以减少NO→N中的劣化这种有毒分子的方法2的Fe O.充分表征的模型二铁配合物[ 2(的Bpmp)(OPR)(NO)2 ] 2+(的Bpmp -= 2,6-双[(双(2-吡啶基甲基)氨基)甲基] -4-甲基酚盐),模仿了这些酶的活性位点结构和反应性,为FNOR的机理提供了重要的见识。目前,我们已使用计算方法阐明了一种相干反应机理,该机理表明该配合物的一电子和二电子还原如何诱导N–N键形成和N 2 O生成,而母体配合物保持稳定。N-N键的初始形成会生成亚硝酸盐(N 2 O 2 2–)遵循自由基类型的耦合机制,这就需要克服强的Fe– NOπ相互作用才能有效地氧化铁中心。次黄铁矿的形成提供最大的激活屏障,ΔG ‡在双电子超还原机理中= 7–8 kcal / mol(几种功能的平均值)。这之后是形成的具有N 2 ö 2 2-配合物与用于非血红素二铁系统一个新的结合模式,允许对于N的容易释放2 ö与羧酸移位的协助。这为反应通过单独的N 2 O形成提供了足够的热力学驱动力。出乎意料的是,单电子“半还原”机理被认为与超还原机理具有竞争性。这是由于BPMP –配体赋予的不对称性,允许单电子还原克服了主要的Fe– NOπ相互作用之一。通常,N 2的介导通过高自旋澳组[{M-NO - }] 2芯依赖于易于氧化的M个中心和破M-NOπ-键到的正式产生一个“完整” 3 NO -单元,从而允许进行N–N键形成的关键步骤(通过自由基型偶联机理)。
更新日期:2018-04-02
中文翻译:

过渡金属-亚硝酰基配合物形成N–N键的机理:模拟黄酮二铁一氧化氮还原酶
一氧化氮(NO)具有许多重要的生物学功能,包括神经信号转导,血压控制以及更高浓度的免疫防御。一些病原性细菌的已开发通过使用flavodiiron氧化氮还原酶(FNORs),其利用非血红素二铁的活性位点,以减少NO→N中的劣化这种有毒分子的方法2的Fe O.充分表征的模型二铁配合物[ 2(的Bpmp)(OPR)(NO)2 ] 2+(的Bpmp -= 2,6-双[(双(2-吡啶基甲基)氨基)甲基] -4-甲基酚盐),模仿了这些酶的活性位点结构和反应性,为FNOR的机理提供了重要的见识。目前,我们已使用计算方法阐明了一种相干反应机理,该机理表明该配合物的一电子和二电子还原如何诱导N–N键形成和N 2 O生成,而母体配合物保持稳定。N-N键的初始形成会生成亚硝酸盐(N 2 O 2 2–)遵循自由基类型的耦合机制,这就需要克服强的Fe– NOπ相互作用才能有效地氧化铁中心。次黄铁矿的形成提供最大的激活屏障,ΔG ‡在双电子超还原机理中= 7–8 kcal / mol(几种功能的平均值)。这之后是形成的具有N 2 ö 2 2-配合物与用于非血红素二铁系统一个新的结合模式,允许对于N的容易释放2 ö与羧酸移位的协助。这为反应通过单独的N 2 O形成提供了足够的热力学驱动力。出乎意料的是,单电子“半还原”机理被认为与超还原机理具有竞争性。这是由于BPMP –配体赋予的不对称性,允许单电子还原克服了主要的Fe– NOπ相互作用之一。通常,N 2的介导通过高自旋澳组[{M-NO - }] 2芯依赖于易于氧化的M个中心和破M-NOπ-键到的正式产生一个“完整” 3 NO -单元,从而允许进行N–N键形成的关键步骤(通过自由基型偶联机理)。
