当前位置: X-MOL 学术ACS Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering Ultrathin C3N4 Quantum Dots on Graphene as a Metal-Free Water Reduction Electrocatalyst
ACS Catalysis ( IF 11.3 ) Pub Date : 2018-03-28 00:00:00 , DOI: 10.1021/acscatal.8b00467
Hai-xia Zhong 1 , Qi Zhang 1, 2 , Jun Wang 1 , Xin-bo Zhang 3 , Xiao-lin Wei 2 , Zhi-jian Wu 3 , Kai Li 3 , Fan-lu Meng 1 , Di Bao 3 , Jun-min Yan 1
Affiliation  

Developing an efficient electrocatalyst with the desired architectural and electronic properties is paramount for water splitting. Here, we apply theoretical calculations to experimental studies to uncover the influence of structure engineering (quantizing and support coupling) on the HER catalytic activity and develop an optimized C3N4 hybrid catalyst. Impressively, the desired atom-thick C3N4 quantum dots on graphene ([email protected]) has been successfully obtained and achieves HER performance with low overpotential (110 mV) at 10 mA cm–2, large exchange current density (3.67 μA cm–2), and long-term durability, better than those of many metallic catalysts. In combination with the experimental results, DFT calculations also disclose that the HER catalytic activity of [email protected] originates from bisynergetic effects: one between G and CNQDs and another between the edge pyridinic-N sites and the molecular sieve structure.

中文翻译:

在石墨烯上设计超薄C 3 N 4量子点作为无金属减水电催化剂

开发具有所需结构和电子性能的高效电催化剂对于水分解至关重要。在这里,我们将理论计算应用于实验研究,以揭示结构工程(量化和载体偶联)对HER催化活性的影响,并开发出优化的C 3 N 4杂化催化剂。令人印象深刻的是,已成功获得石墨烯上所需的原子级厚C 3 N 4量子点([受电子邮件保护]),并在10 mA cm –2时具有低过电势(110 mV),交换电流密度大(3.67μA )的情况下实现了HER性能。厘米–2)和长期耐久性,优于许多金属催化剂。结合实验结果,DFT计算还揭示了[受电子邮件保护的]的HER催化活性源自双协同作用:一个在G和CNQD之间,另一个在边缘吡啶-N位与分子筛结构之间。
更新日期:2018-03-28
down
wechat
bug