当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quasi-Hexagonal Cu 1.5 Mn 1.5 O 4 Nanoplates Decorated on Hollow CuO by Kirkendall Effect for Enhancing Lithium Storage Performance
Applied Surface Science ( IF 6.3 ) Pub Date : 2018-07-01 , DOI: 10.1016/j.apsusc.2018.03.191
Peng Liu , Xifeng Xia , Wu Lei , Xinyan Jiao , Lei Lu , Yu Ouyang , Qingli Hao

Abstract Constructing a hierarchical heterogeneous composite is deemed as an effective way to solve the current problems of metal oxides as lithium ion batteries’ anodes. In this work, we simultaneously designed the heterogeneous component and structure of the novel hybrid based on Kirkendall effect. The composite was composed of quasi-hexagonal Cu1.5Mn1.5O4 nanoplates as a shell and CuO with voids as a core. The hybrids were characterized by using XRD, FTIR, TEM and SEM. It was found that the heating rate greatly influences the combination form of Cu1.5Mn1.5O4 and CuO. The quasi-hexagonal Cu1.5Mn1.5O4 nanoplates were assembled into branch-like shell decorated on the CuO surface under the low heating rate. However, the high heating rate led to a compact Cu1.5Mn1.5O4 shell, although the shell was also assembled by quasi-hexagonal nanoplates. The reasonable formation mechanism of the unique component and structure was proposed. Such a hybrid with the branch-like shell exhibited the best lithium storage performance. The improved electrochemical performance can be attributed to the unique component and structure. Typically, the inside voids can alleviate the volume change and the hierarchical shell can provide much contact and reaction sites. This work not only opens a new view in constructing heterogeneous hybrid with unique structure by Kirkendall effect, but also can be expanded for many other structure-based applications, such as energy storage, sensors, and heterogeneous catalysts.

中文翻译:

通过柯肯德尔效应装饰在空心 CuO 上的准六方 Cu 1.5 Mn 1.5 O 4 纳米片以提高锂存储性能

摘要 构建分层异质复合材料被认为是解决目前金属氧化物作为锂离子电池负极问题的有效途径。在这项工作中,我们同时设计了基于柯肯德尔效应的新型混合动力车的异构组件和结构。该复合材料由准六方Cu1.5Mn1.5O4纳米片作为壳层和CuO为核心组成。通过使用 XRD、FTIR、TEM 和 SEM 对杂化物进行了表征。结果表明,加热速率对Cu1.5Mn1.5O4和CuO的结合形式有很大影响。在低加热速率下,准六方Cu1.5Mn1.5O4纳米片组装成装饰在CuO表面的树枝状壳。然而,高加热速率导致了紧凑的 Cu1.5Mn1.5O4 壳,尽管壳也由准六边形纳米板组装。提出了独特部件和结构的合理形成机理。这种具有分支状壳的混合物表现出最好的锂存储性能。改进的电化学性能可归因于独特的成分和结构。通常,内部空隙可以减轻体积变化,分层壳可以提供很多接触和反应位点。这项工作不仅为通过柯​​肯德尔效应构建具有独特结构的多相混合物开辟了新的视角,而且可以扩展到许多其他基于结构的应用,如储能、传感器和多相催化剂。改进的电化学性能可归因于独特的成分和结构。通常,内部空隙可以减轻体积变化,分层壳可以提供很多接触和反应位点。这项工作不仅为通过柯​​肯德尔效应构建具有独特结构的多相混合物开辟了新的视角,而且可以扩展到许多其他基于结构的应用,如储能、传感器和多相催化剂。改进的电化学性能可归因于独特的成分和结构。通常,内部空隙可以减轻体积变化,分层壳可以提供很多接触和反应位点。这项工作不仅为通过柯​​肯德尔效应构建具有独特结构的多相混合物开辟了新的视角,而且可以扩展到许多其他基于结构的应用,如储能、传感器和多相催化剂。
更新日期:2018-07-01
down
wechat
bug