当前位置: X-MOL 学术J. Phys. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Small-Size Effects on Electron Transfer in P3HT/InP Quantum Dots
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2015-11-17 00:00:00 , DOI: 10.1021/acs.jpcc.5b09397
Jun Yin 1 , Manoj Kumar 1 , Qiong Lei 2 , Lin Ma 1 , Sai Santosh Kumar Raavi 1 , Gagik G. Gurzadyan 1 , Cesare Soci 1
Affiliation  

The charge carrier photogeneration yield in hybrid polymer/nanocrystal solar cells strongly depends on the interplay between charge transfer across quantum dot (QD) organic capping layers and quantum confinement effects related to the QD size. Here we combine femtosecond transient spectroscopy and density functional theory (DFT) calculations to improve the understanding of charge transfer dynamics at P3HT/InP QD heterointerfaces as a function of core size (2.5 vs 4.5 nm) and length of the surface ligands (oleylamine vs pyridine). We find that, for large core QDs, the polaron generation yield in P3HT is enhanced by efficient exciton dissociation and charge transfer, and is limited by the length of the ligands. Conversely, for smaller size QDs, electron injection from P3HT to InP cores becomes inefficient due to the unfavorable interfacial energetics, even with short pyridine ligands. Thus, we suggest that both QD surface ligand functionalization and core size should be optimized simultaneously for the design of high-performance hybrid nanocrystal/polymer solar cells.

中文翻译:

P3HT / InP量子点中电子转移的小尺寸影响

杂化聚合物/纳米晶体太阳能电池中载流子的光生产率在很大程度上取决于跨量子点(QD)有机覆盖层的电荷转移和与QD尺寸有关的量子约束效应之间的相互作用。在这里,我们结合飞秒瞬态光谱法和密度泛函理论(DFT)计算来提高对P3HT / InP QD异质界面处的电荷转移动力学的了解,该动力学是核心尺寸(2.5 vs 4.5 nm)和表面配体长度(油胺与吡啶)的函数)。我们发现,对于大核心量子点,P3HT中极化子的产生产率通过有效的激子离解和电荷转移而提高,并受配体长度的限制。相反,对于较小尺寸的量子点,由于不利的界面能学,即使使用短吡啶配体,从P3HT向InP核注入电子也变得效率低下。因此,我们建议对于高性能混合纳米晶体/聚合物太阳能电池的设计,应同时优化QD表面配体功能化和核心尺寸。
更新日期:2015-11-17
down
wechat
bug