Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Co@C/CoO x coupled with N-doped layer-structured carbons for excellent CO 2 capture and oxygen reduction reaction
Carbon ( IF 10.5 ) Pub Date : 2018-07-01 , DOI: 10.1016/j.carbon.2018.03.044 Huayang Zhang , Wenjie Tian , Zhao Qian , Tianhong Ouyang , Martin Saunders , Jingyu Qin , Shaobin Wang , Moses O. Tadé , Hongqi Sun
Carbon ( IF 10.5 ) Pub Date : 2018-07-01 , DOI: 10.1016/j.carbon.2018.03.044 Huayang Zhang , Wenjie Tian , Zhao Qian , Tianhong Ouyang , Martin Saunders , Jingyu Qin , Shaobin Wang , Moses O. Tadé , Hongqi Sun
Abstract Current environmental and energy issues urge the advance of stable and cost-effective porous nanostructures for highly efficient electrochemical energy conversion/storage, and gas adsorption/separation. Herein, we report a one-pot, scalable pyrolysis process for fabrication of hierarchically layer-structured porous carbons with nitrogen doping and cobalt modification (Co-N-PCs) for efficient high-pressure CO2 gas adsorption and oxygen reduction reaction (ORR). Co-N-PCs possess large specific surface areas and abundant layered macropores containing micropores and narrow mesopores, coupled with core-shell Co@C/CoOx structure. Co-N-PC 800 (synthesized at 800 °C) shows a high CO2 capture capability of 18.5 mmol g−1 at 10 bar (0 °C) and an outstanding catalytic activity for ORR. Density functional theory (DFT) calculations reveal that the cobalt cores inside graphene layers powerfully promote electron transfer from Co to surrounding C atoms, which work together with doped N to create superior catalytically active sites in the graphene shells. In addition, the negative charge states of C induced in N-doped Co@C structure contribute to the capture of CO2.
中文翻译:
Co@C/CoO x 与 N 掺杂的层状结构碳相结合,可实现优异的 CO 2 捕获和氧还原反应
摘要 当前的环境和能源问题推动了稳定且具有成本效益的多孔纳米结构的发展,以实现高效的电化学能量转换/存储和气体吸附/分离。在此,我们报告了一种单锅、可扩展的热解工艺,用于制造具有氮掺杂和钴改性(Co-N-PC)的分层层状结构多孔碳,用于高效的高压 CO2 气体吸附和氧还原反应(ORR)。Co-N-PCs 具有大的比表面积和丰富的层状大孔,包含微孔和窄介孔,以及核壳 Co@C/CoOx 结构。Co-N-PC 800(在 800 °C 下合成)在 10 bar (0 °C) 下显示出 18.5 mmol g-1 的高 CO2 捕获能力和出色的 ORR 催化活性。密度泛函理论 (DFT) 计算表明,石墨烯层内的钴核有力地促进了电子从 Co 到周围 C 原子的转移,C 原子与掺杂的 N 共同作用,在石墨烯壳中产生了优异的催化活性位点。此外,在 N 掺杂的 Co@C 结构中诱导的 C 的负电荷态有助于捕获 CO2。
更新日期:2018-07-01
中文翻译:
Co@C/CoO x 与 N 掺杂的层状结构碳相结合,可实现优异的 CO 2 捕获和氧还原反应
摘要 当前的环境和能源问题推动了稳定且具有成本效益的多孔纳米结构的发展,以实现高效的电化学能量转换/存储和气体吸附/分离。在此,我们报告了一种单锅、可扩展的热解工艺,用于制造具有氮掺杂和钴改性(Co-N-PC)的分层层状结构多孔碳,用于高效的高压 CO2 气体吸附和氧还原反应(ORR)。Co-N-PCs 具有大的比表面积和丰富的层状大孔,包含微孔和窄介孔,以及核壳 Co@C/CoOx 结构。Co-N-PC 800(在 800 °C 下合成)在 10 bar (0 °C) 下显示出 18.5 mmol g-1 的高 CO2 捕获能力和出色的 ORR 催化活性。密度泛函理论 (DFT) 计算表明,石墨烯层内的钴核有力地促进了电子从 Co 到周围 C 原子的转移,C 原子与掺杂的 N 共同作用,在石墨烯壳中产生了优异的催化活性位点。此外,在 N 掺杂的 Co@C 结构中诱导的 C 的负电荷态有助于捕获 CO2。