当前位置: X-MOL 学术Nat. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Targeted chemical pressure yields tuneable millimetre-wave dielectric.
Nature Materials ( IF 37.2 ) Pub Date : 2019-12-23 , DOI: 10.1038/s41563-019-0564-4
Natalie M Dawley 1 , Eric J Marksz 2, 3 , Aaron M Hagerstrom 3 , Gerhard H Olsen 4 , Megan E Holtz 1, 4 , Veronica Goian 5 , Christelle Kadlec 5 , Jingshu Zhang 1 , Xifeng Lu 3 , Jasper A Drisko 3 , Reinhard Uecker 6 , Steffen Ganschow 6 , Christian J Long 3 , James C Booth 3 , Stanislav Kamba 5 , Craig J Fennie 4 , David A Muller 4 , Nathan D Orloff 3 , Darrell G Schlom 1, 7
Affiliation  

Epitaxial strain can unlock enhanced properties in oxide materials, but restricts substrate choice and maximum film thickness, above which lattice relaxation and property degradation occur. Here we employ a chemical alternative to epitaxial strain by providing targeted chemical pressure, distinct from random doping, to induce a ferroelectric instability with the strategic introduction of barium into today's best millimetre-wave tuneable dielectric, the epitaxially strained 50-nm-thick n = 6 (SrTiO3)nSrO Ruddlesden-Popper dielectric grown on (110) DyScO3. The defect mitigating nature of (SrTiO3)nSrO results in unprecedented low loss at frequencies up to 125 GHz. No barium-containing Ruddlesden-Popper titanates are known, but the resulting atomically engineered superlattice material, (SrTiO3)n-m(BaTiO3)mSrO, enables low-loss, tuneable dielectric properties to be achieved with lower epitaxial strain and a 200% improvement in the figure of merit at commercially relevant millimetre-wave frequencies. As tuneable dielectrics are key constituents of emerging millimetre-wave high-frequency devices in telecommunications, our findings could lead to higher performance adaptive and reconfigurable electronics at these frequencies.

中文翻译:

目标化学压力产生可调谐的毫米波电介质。

外延应变可以解锁氧化物材料中增强的性能,但限制了基材的选择和最大膜厚度,在此之上发生晶格弛豫和性能下降。在这里,我们通过提供不同于随机掺杂的有针对性的化学压力,采用化学替代外延应变的方法,通过将钡战略性地引入当今最好的毫米波可调谐电介质(外延应变50 nm厚n =),来诱导铁电不稳定性。 6(SrTiO3)nSrO Ruddlesden-Popper电介质在(110)DyScO3上生长。(SrTiO3)nSrO的缺陷缓解特性可在高达125 GHz的频率下实现空前的低损耗。尚无含钡的Ruddlesden-Popper钛酸酯,但所得的原子工程超晶格材料(SrTiO3)nm(BaTiO3)mSrO可以实现低损耗,在与商业相关的毫米波频率下,可以通过较低的外延应变实现优异的可调谐介电性能,并且品质因数提高200%。由于可调电介质是电信中新兴的毫米波高频设备的关键组成部分,因此我们的发现可能会导致在这些频率下具有更高性能的自适应和可重构电子设备。
更新日期:2019-12-23
down
wechat
bug