当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Alkaline-Earth Bis(trifluoromethanesulfonimide) Additives for Efficient and Stable Perovskite Solar Cells
Nano Energy ( IF 16.8 ) Pub Date : 2019-12-20 , DOI: 10.1016/j.nanoen.2019.104412
Ngoc Duy Pham , Jing Shang , Yang Yang , Minh Tam Hoang , Vincent Tiing Tiong , Xiaoxiang Wang , Lijuan Fan , Peng Chen , Liangzhi Kou , Lianzhou Wang , Hongxia Wang

Environmental instability of Spiro-OMeTAD-based hole transport layer (HTL) caused due to rapid aggregation and hydration of its additive, Lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI), gives rise to an accelerated degradation of the resulting perovskite solar cells (PSCs). Herein, we show that replacing the Li-TFSI with the more hydrophobic alkaline-earth bis(trifluoromethanesulfonyl)imide additives, namely Mg-TFSI2 and Ca-TFSI2, can effectively stabilize the coordination complexes between the TFSI-salts and 4-tert-Butylpyridine, which in turn results in retarded additive aggregation and hydration, enabling enhanced moisture-resistance of the subsequent HTLs. Moreover, by manipulating this substitution method, we achieved high-quality HTLs with increased hole mobility, better-formed interface with the adjacent perovskite, allowing improved hole extraction process. Incorporating these HTLs into photovoltaic devices, we obtained a substantial performance improvement, with the champion PSC yielded a power conversion efficiency of over 20%. In addition, un-encapsulated devices stabilized by the alkaline-earth bis(trifluoromethanesulfonyl)imide additive maintained 83% its initial efficiency for 193 days after aging in ambient air (RH% = 55-70%).



中文翻译:

高效,稳定的钙钛矿型太阳能电池用碱土双(三氟甲烷磺酰亚胺)添加剂

由于其添加剂双(三氟甲磺酰基)酰亚胺锂(Li-TFSI)的快速聚集和水合而导致的基于Spiro-OMeTAD的空穴传输层(HTL)的环境不稳定性导致了所产生的钙钛矿太阳能电池的加速降解( PSC)。在本文中,我们显示了用疏水性更强的碱土金属双(三氟甲磺酰基)酰亚胺添加剂(即Mg-TFSI 2和Ca-TFSI 2)代替Li-TFSI可以有效地稳定TFSI盐和4-叔丁基吡啶之间的配位络合物,进而导致添加剂的聚集和水合作用受阻,从而增强后续HTL的耐湿性。此外,通过操纵这种替代方法,我们获得了具有更高空穴迁移率,与相邻钙钛矿的形成更好的界面的高质量HTL,从而改善了空穴提取过程。将这些HTL集成到光伏设备中,我们获得了实质性的性能提升,冠军的PSC产生了超过20%的功率转换效率。此外,在环境空气中老化后,用碱土金属双(三氟甲磺酰基)酰亚胺添加剂稳定的未封装器件在193天后仍保持其初始效率的83%(RH%= 55-70%)。

更新日期:2019-12-20
down
wechat
bug