当前位置:
X-MOL 学术
›
J. Phys. Chem. C
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Graphene–Organic Two-Dimensional Charge-Transfer Complexes: Intermolecular Electronic Transitions and Broadband Near-Infrared Photoresponse
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2018-03-15 00:00:00 , DOI: 10.1021/acs.jpcc.8b01408 Menghua Cui 1, 2, 3 , Yuzheng Guo 4 , Yiming Zhu 1 , Haining Liu 1 , Wen Wen 1, 3 , Juanxia Wu 1 , Linxiu Cheng 1 , Qingdao Zeng 1 , Liming Xie 1, 3
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2018-03-15 00:00:00 , DOI: 10.1021/acs.jpcc.8b01408 Menghua Cui 1, 2, 3 , Yuzheng Guo 4 , Yiming Zhu 1 , Haining Liu 1 , Wen Wen 1, 3 , Juanxia Wu 1 , Linxiu Cheng 1 , Qingdao Zeng 1 , Liming Xie 1, 3
Affiliation
Charge-transfer (CT) complexes with unique intermolecular electronic transitions have attracted broad interest and hold great potential in optoelectronic applications. Here, we report a new family of two-dimensional graphene-organic molecule CT complexes. Density functional theory (DFT) calculation has revealed low-energy CT bands in the near-infrared (NIR) region up to 2000 nm for graphene-TCNQ (tetracyanoquinodimethane), graphene-F4TCNQ (2,3,5,6-Tetrafluoro-tetracyanoquinodimethane) and graphene-TCOQ (tetrachloro-o-benzoquinone) complexes. Raman and electrical measurements have confirmed a partial charge transfer between graphene and the molecules at the ground state. CT excitations have been calculated by DFT and verified by optoelectronic measurements. The graphene–organic CT complexes have shown a broadband photoresponse from the visible to NIR range, attributed to the intermolecular electronic transitions. Further, the photoresponsivity (up to 103 A/W) suggests a high photoelectrical gain arising from the photogating effect at the graphene/molecule interface. At last, the photoresponse property of the graphene–organic CT complexes can be tuned by electrical gating of graphene.
中文翻译:
石墨烯-有机二维电荷转移复合物:分子间电子跃迁和宽带近红外光响应
具有独特的分子间电子跃迁的电荷转移(CT)配合物引起了广泛的兴趣,并在光电应用中具有巨大的潜力。在这里,我们报告了一个新的二维石墨烯-有机分子CT复合物家族。密度泛函理论(DFT)计算显示了石墨烯-TCNQ(四氰基喹二甲烷),石墨烯-F 4的近红外(NIR)区域中的低能CT谱带TCNQ(2,3,5,6-四氟-四氰基喹二甲烷)和石墨烯-TCOQ(四氯-邻苯醌)配合物。拉曼光谱和电学测量已证实石墨烯与处于基态的分子之间存在部分电荷转移。CT激发已通过DFT计算并通过光电测量进行了验证。石墨烯-有机CT络合物已显示出从可见光到NIR的宽带光响应,这归因于分子间电子跃迁。此外,光响应性(高达10 3 A / W)表明由石墨烯/分子界面处的光闸效应产生的高光电增益。最后,可以通过石墨烯的电门控来调节石墨烯-有机CT配合物的光响应特性。
更新日期:2018-03-15
中文翻译:
石墨烯-有机二维电荷转移复合物:分子间电子跃迁和宽带近红外光响应
具有独特的分子间电子跃迁的电荷转移(CT)配合物引起了广泛的兴趣,并在光电应用中具有巨大的潜力。在这里,我们报告了一个新的二维石墨烯-有机分子CT复合物家族。密度泛函理论(DFT)计算显示了石墨烯-TCNQ(四氰基喹二甲烷),石墨烯-F 4的近红外(NIR)区域中的低能CT谱带TCNQ(2,3,5,6-四氟-四氰基喹二甲烷)和石墨烯-TCOQ(四氯-邻苯醌)配合物。拉曼光谱和电学测量已证实石墨烯与处于基态的分子之间存在部分电荷转移。CT激发已通过DFT计算并通过光电测量进行了验证。石墨烯-有机CT络合物已显示出从可见光到NIR的宽带光响应,这归因于分子间电子跃迁。此外,光响应性(高达10 3 A / W)表明由石墨烯/分子界面处的光闸效应产生的高光电增益。最后,可以通过石墨烯的电门控来调节石墨烯-有机CT配合物的光响应特性。