当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Customized Kirigami Electrodes for Flexible and Deformable Lithium-Ion Batteries.
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-12-18 , DOI: 10.1021/acsami.9b18232 Yinhua Bao 1 , Guangqi Hong 2 , Ya Chen 2 , Jian Chen 2 , Haosen Chen 2 , Wei-Li Song 2 , Daining Fang 1, 2
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-12-18 , DOI: 10.1021/acsami.9b18232 Yinhua Bao 1 , Guangqi Hong 2 , Ya Chen 2 , Jian Chen 2 , Haosen Chen 2 , Wei-Li Song 2 , Daining Fang 1, 2
Affiliation
Customized deformable lithium-ion batteries (LIBs) have attracted interest in the emerging power systems for flexible and wearable electronics. However, a key challenge for developing these batteries is the fabrication of customized deformable electrodes that exhibit strong mechanical tolerance and robust electrochemical performance during deformation. Here, free-standing customized kirigami electrodes for deformable LIBs are fabricated by an evolutionary printing method with universal viscous electrode inks and a customizable polydimethylsiloxane template. The electrodes comprise lithium iron phosphate or lithium titanium oxide nanoparticles with a conductive carbon nanotubes/poly(vinylidene fluoride) scaffold, which is ideal for electron transfer. The compact microstructure and kirigami pattern endow the electrodes with superior mechanical robustness (over 500 stretch-release cycles) and resistance stability both in unstretched and stretched states. Finite element analysis and corresponding experiment tests reveal ultralow strain inside the materials, showing less than 3% strain even under 100% stretch ratio. With 500-times stretched electrodes, the full-cell LIBs can still deliver a considerable discharge capacity of average 94.5 mA h g-1 at 0.3 C after 100 discharge/charge cycles. The integration of such outstanding mechanical stability, excellent electrochemical performance, and simple printing method with accessible starting materials presents promising opportunities for customizing deformable components for flexible energy storage devices.
中文翻译:
用于柔性和可变形锂离子电池的定制Kirigami电极。
定制的可变形锂离子电池(LIB)在新兴的用于柔性和可穿戴电子设备的电源系统中引起了人们的兴趣。然而,开发这些电池的关键挑战是定制的可变形电极的制造,该可变形电极在变形过程中表现出强大的机械耐受性和强大的电化学性能。在这里,可变形的LIB的独立式定制折纸电极是采用通用粘性电极油墨和可定制的聚二甲基硅氧烷模板通过进化印刷方法制造的。电极包含具有导电碳纳米管/聚偏二氟乙烯支架的磷酸锂铁或锂钛氧化物纳米颗粒,非常适合电子转移。紧凑的微观结构和折纸图案使电极在未拉伸和拉伸状态下均具有出色的机械强度(超过500个拉伸释放循环)和电阻稳定性。有限元分析和相应的实验测试显示出材料内部的超低应变,即使在100%拉伸比下也显示不到3%的应变。使用500倍的拉伸电极,经过100次放电/充电后,全电池LIB在0.3 C时仍可提供相当大的平均94.5 mA h g-1放电容量。这种出色的机械稳定性,出色的电化学性能以及简单的印刷方法与可触及的起始材料的集成为定制用于柔性储能装置的可变形组件提供了广阔的机遇。
更新日期:2019-12-19
中文翻译:
用于柔性和可变形锂离子电池的定制Kirigami电极。
定制的可变形锂离子电池(LIB)在新兴的用于柔性和可穿戴电子设备的电源系统中引起了人们的兴趣。然而,开发这些电池的关键挑战是定制的可变形电极的制造,该可变形电极在变形过程中表现出强大的机械耐受性和强大的电化学性能。在这里,可变形的LIB的独立式定制折纸电极是采用通用粘性电极油墨和可定制的聚二甲基硅氧烷模板通过进化印刷方法制造的。电极包含具有导电碳纳米管/聚偏二氟乙烯支架的磷酸锂铁或锂钛氧化物纳米颗粒,非常适合电子转移。紧凑的微观结构和折纸图案使电极在未拉伸和拉伸状态下均具有出色的机械强度(超过500个拉伸释放循环)和电阻稳定性。有限元分析和相应的实验测试显示出材料内部的超低应变,即使在100%拉伸比下也显示不到3%的应变。使用500倍的拉伸电极,经过100次放电/充电后,全电池LIB在0.3 C时仍可提供相当大的平均94.5 mA h g-1放电容量。这种出色的机械稳定性,出色的电化学性能以及简单的印刷方法与可触及的起始材料的集成为定制用于柔性储能装置的可变形组件提供了广阔的机遇。