当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Correlated Electro-Optical and Structural Study of Electrically Tunable Nanowire Quantum Dot Emitters.
Nano Letters ( IF 9.6 ) Pub Date : 2019-12-23 , DOI: 10.1021/acs.nanolett.9b03858 Maria Spies 1 , Akhil Ajay 2 , Eva Monroy 2 , Bruno Gayral 2 , Martien I den Hertog 1
Nano Letters ( IF 9.6 ) Pub Date : 2019-12-23 , DOI: 10.1021/acs.nanolett.9b03858 Maria Spies 1 , Akhil Ajay 2 , Eva Monroy 2 , Bruno Gayral 2 , Martien I den Hertog 1
Affiliation
Quantum dots inserted in semiconducting nanowires are an interesting platform for the fabrication of single photon devices. To fully understand the physical properties of these objects, we need to correlate the optical, transport, and structural properties on the same nanostructure. In this work, we study the spectral tunability of the emission of a single quantum dot in a GaN nanowire by applying external bias. The nanowires are dispersed and contacted on electron beam transparent Si3N4 membranes, so that transmission electron microscopy observations, photocurrent, and micro-photoluminescence measurements under bias can be performed on the same specimen. The emission from a single dot blue or red shifts when the external electric field compensates or enhances the internal electric field generated by the spontaneous and piezoelectric polarization. A detailed study of two nanowire specimens emitting at 327.5 and 307.5 nm shows spectral shifts at rates of 20 and 12 meV/V, respectively. Theoretical calculations facilitated by the modeling of the exact heterostructure provide a good description of the experimental observations. When the bias-induced band bending is strong enough to favor tunneling of the electron in the dot toward the stem or the cap, the spectral shift saturates and additional transitions associated with charged excitons can be observed.
中文翻译:
电可调纳米线量子点发射器的相关电光和结构研究。
插入半导体纳米线中的量子点是制造单光子器件的有趣平台。为了充分了解这些物体的物理特性,我们需要将同一纳米结构上的光学,传输和结构特性关联起来。在这项工作中,我们通过施加外部偏置来研究GaN纳米线中单个量子点发射的光谱可调谐性。纳米线分散并与电子束透明的Si3N4膜接触,因此可以在同一样品上进行透射电子显微镜观察,光电流和偏压下的微光致发光测量。当外部电场补偿或增强由自发和压电极化产生的内部电场时,来自单个点的发射蓝色或红色的光会发生偏移。对两个在327.5和307.5 nm处发射的纳米线样品的详细研究显示,光谱位移分别以20和12 meV / V的速率发生。精确的异质结构建模促进的理论计算为实验观察提供了很好的描述。当偏置引起的能带弯曲足够强以至于有利于点中的电子向茎或帽的隧穿时,光谱位移饱和,并且可以观察到与带电激子相关的其他跃迁。
更新日期:2019-12-25
中文翻译:
电可调纳米线量子点发射器的相关电光和结构研究。
插入半导体纳米线中的量子点是制造单光子器件的有趣平台。为了充分了解这些物体的物理特性,我们需要将同一纳米结构上的光学,传输和结构特性关联起来。在这项工作中,我们通过施加外部偏置来研究GaN纳米线中单个量子点发射的光谱可调谐性。纳米线分散并与电子束透明的Si3N4膜接触,因此可以在同一样品上进行透射电子显微镜观察,光电流和偏压下的微光致发光测量。当外部电场补偿或增强由自发和压电极化产生的内部电场时,来自单个点的发射蓝色或红色的光会发生偏移。对两个在327.5和307.5 nm处发射的纳米线样品的详细研究显示,光谱位移分别以20和12 meV / V的速率发生。精确的异质结构建模促进的理论计算为实验观察提供了很好的描述。当偏置引起的能带弯曲足够强以至于有利于点中的电子向茎或帽的隧穿时,光谱位移饱和,并且可以观察到与带电激子相关的其他跃迁。