当前位置:
X-MOL 学术
›
ChemSusChem
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Elimination of Yellow Phase: An Effective Method to Achieve High Quality HC(NH2 )2 PbI3 -based Perovskite Films.
ChemSusChem ( IF 7.5 ) Pub Date : 2019-12-18 , DOI: 10.1002/cssc.201903216 Xiaoxiao Xu 1, 2 , Haiying Zheng 1, 2 , Guozhen Liu 1, 2 , Liangzheng Zhu 3 , Dingchao He 1, 2 , Shendong Xu 1, 2 , Huifen Xu 1 , Liying Zhang 1, 4 , Xianxi Zhang 4 , Xu Pan 1
ChemSusChem ( IF 7.5 ) Pub Date : 2019-12-18 , DOI: 10.1002/cssc.201903216 Xiaoxiao Xu 1, 2 , Haiying Zheng 1, 2 , Guozhen Liu 1, 2 , Liangzheng Zhu 3 , Dingchao He 1, 2 , Shendong Xu 1, 2 , Huifen Xu 1 , Liying Zhang 1, 4 , Xianxi Zhang 4 , Xu Pan 1
Affiliation
Formamidinium lead iodide-based (FAPbI3 ) perovskite is widely used in the field of photovoltaics, owing to its suitable bandgap (ca. 1.45 eV) and better thermal stability. FAPbI3 has two polymorphs (black α-FAPbI3 and yellow δ-FAPbI3 ) at ambient temperature. The yellow δ-FAPbI3 , which has no photoactivity, has a chain-like structure that likely hinders electron transport and reduces photovoltaic performance. However, pure-phase black α-FAPbI3 without any yellow phase is difficult to obtain and the underlying mechanism of the phase transition is rarely investigated. In this study, a facile bi-additive method (BA method) has been developed to completely eliminate the yellow δ-FAPbI3 phase by inducing a phase transition from δ-FAPbI3 to α-FAPbI3 . HI and Pb(SCN)2 were employed as dual additives. Based on the investigation of the annealing time and temperature, we determined that the BA method can induce the phase transition and enhance the stability of α-FAPbI3 . Owing to the enhanced crystallization as well as uniform morphology of the BA film, the perovskite solar cells (PSCs) exhibited an increased power conversion efficiency (PCE). Furthermore, the optimal devices displayed excellent stability and maintained over 80 % of initial PCE after aging for 400 h in air. This work provides a new insight into the fabrication of high-quality pure α-FAPbI3 perovskite films and makes high efficiency photovoltaic devices a reality.
中文翻译:
消除黄相:一种获得高质量HC(NH2)2 PbI3基钙钛矿薄膜的有效方法。
基于甲ami碘化铅(FAPbI3)的钙钛矿因其合适的带隙(约1.45 eV)和更好的热稳定性而被广泛用于光伏领域。FAPbI3在环境温度下具有两个多晶型物(黑色α-FAPbI3和黄色δ-FAPbI3)。没有光活性的黄色δ-FAPbI3具有链状结构,可能会阻碍电子传输并降低光伏性能。然而,难以获得没有任何黄相的纯相黑色α-FAPbI3,并且很少研究相变的潜在机理。在这项研究中,已经开发了一种简便的双加成法(BA法),通过诱导从δ-FAPbI3到α-FAPbI3的相变来完全消除黄色的δ-FAPbI3相。HI和Pb(SCN)2被用作双重添加剂。根据对退火时间和温度的研究,我们确定BA方法可以诱导相变并增强α-FAPbI3的稳定性。由于BA膜的增强的结晶以及均匀的形态,钙钛矿太阳能电池(PSC)表现出提高的功率转换效率(PCE)。此外,最佳器件在空气中老化400小时后显示出极好的稳定性,并保持了80%的初始PCE。这项工作为制造高质量的纯α-FAPbI3钙钛矿薄膜提供了新的见识,并使高效光伏器件成为现实。钙钛矿太阳能电池(PSC)表现出更高的功率转换效率(PCE)。此外,最佳器件在空气中老化400小时后显示出极好的稳定性,并保持了80%的初始PCE。这项工作为制造高质量的纯α-FAPbI3钙钛矿薄膜提供了新的见识,并使高效光伏器件成为现实。钙钛矿太阳能电池(PSC)表现出更高的功率转换效率(PCE)。此外,最佳器件在空气中老化400小时后显示出极好的稳定性,并保持了80%的初始PCE。这项工作为制造高质量的纯α-FAPbI3钙钛矿薄膜提供了新的见识,并使高效光伏器件成为现实。
更新日期:2020-01-31
中文翻译:
消除黄相:一种获得高质量HC(NH2)2 PbI3基钙钛矿薄膜的有效方法。
基于甲ami碘化铅(FAPbI3)的钙钛矿因其合适的带隙(约1.45 eV)和更好的热稳定性而被广泛用于光伏领域。FAPbI3在环境温度下具有两个多晶型物(黑色α-FAPbI3和黄色δ-FAPbI3)。没有光活性的黄色δ-FAPbI3具有链状结构,可能会阻碍电子传输并降低光伏性能。然而,难以获得没有任何黄相的纯相黑色α-FAPbI3,并且很少研究相变的潜在机理。在这项研究中,已经开发了一种简便的双加成法(BA法),通过诱导从δ-FAPbI3到α-FAPbI3的相变来完全消除黄色的δ-FAPbI3相。HI和Pb(SCN)2被用作双重添加剂。根据对退火时间和温度的研究,我们确定BA方法可以诱导相变并增强α-FAPbI3的稳定性。由于BA膜的增强的结晶以及均匀的形态,钙钛矿太阳能电池(PSC)表现出提高的功率转换效率(PCE)。此外,最佳器件在空气中老化400小时后显示出极好的稳定性,并保持了80%的初始PCE。这项工作为制造高质量的纯α-FAPbI3钙钛矿薄膜提供了新的见识,并使高效光伏器件成为现实。钙钛矿太阳能电池(PSC)表现出更高的功率转换效率(PCE)。此外,最佳器件在空气中老化400小时后显示出极好的稳定性,并保持了80%的初始PCE。这项工作为制造高质量的纯α-FAPbI3钙钛矿薄膜提供了新的见识,并使高效光伏器件成为现实。钙钛矿太阳能电池(PSC)表现出更高的功率转换效率(PCE)。此外,最佳器件在空气中老化400小时后显示出极好的稳定性,并保持了80%的初始PCE。这项工作为制造高质量的纯α-FAPbI3钙钛矿薄膜提供了新的见识,并使高效光伏器件成为现实。