当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synergistic Coassembly of Highly Wettable and Uniform Hole‐Extraction Monolayers for Scaling‐up Perovskite Solar Cells
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2019-12-18 , DOI: 10.1002/adfm.201909509 Erpeng Li 1 , Enbing Bi 2 , Yongzhen Wu 1 , Weiwei Zhang 1 , Linchang Li 1 , Han Chen 2 , Liyuan Han 2 , He Tian 1 , Wei‐Hong Zhu 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2019-12-18 , DOI: 10.1002/adfm.201909509 Erpeng Li 1 , Enbing Bi 2 , Yongzhen Wu 1 , Weiwei Zhang 1 , Linchang Li 1 , Han Chen 2 , Liyuan Han 2 , He Tian 1 , Wei‐Hong Zhu 1
Affiliation
All organic charge‐transporting layer (CTL)‐featured perovskite solar cells (PSCs) exhibit distinct advantages, but their scaling‐up remains a great challenge because the organic CTLs underneath the perovskite are too thin to achieve large‐area homogeneous layers by spin‐coating, and their hydrophobic nature further hinders the solution‐based fabrication of perovskite layer. Here, an unprecedented anchoring‐based coassembly (ACA) strategy is reported that involves a synergistic coadsorption of a hydrophilic ammonium salt CA‐Br with hole‐transporting triphenylamine derivatives to acquire scalable and wettable organic hole‐extraction monolayers for p–i–n structured PSCs. The ACA route not only enables ultrathin organic CTLs with high uniformity but also eliminates the nonwetting problem to facilitate large‐area perovskite films with 100% coverage. Moreover, incorporation of CA‐Br in the ACA strategy can distinctly guarantee a high quality of electronic connection via the cations' vacancy passivation. Consequently, a high power‐conversion‐efficiency (PCE) of 17.49% is achieved for p–i–n structured PSCs (1.02 cm2), and a module with an aperture area of 36 cm2 shows PCE of 12.67%, one of the best scaling‐up results among all‐organic CTL‐based PSCs. This work demonstrates that the ACA strategy can be a promising route to large‐area uniform interfacial layers as well as scaling‐up of perovskite solar cells.
中文翻译:
高度可扩展且均匀的孔提取单层的协同共组装,用于按比例放大钙钛矿太阳能电池
所有具有有机电荷传输层(CTL)功能的钙钛矿太阳能电池(PSC)都具有明显的优势,但是其放大仍然是一个巨大的挑战,因为钙钛矿下面的有机CTL太薄,无法通过自旋形成大面积的均质层。涂层及其疏水性进一步阻碍了钙钛矿层溶液的制备。在此报道了前所未有的基于锚固的共组装(ACA)策略,该策略涉及亲水性铵盐CA-Br的协同共吸附用空穴传输的三苯胺衍生物获得可扩展的和可润湿的有机p-i–n结构化PSC单层空穴。ACA路线不仅可以使有机超薄CTL具有很高的均匀性,而且消除了不润湿的问题,从而可以实现覆盖率达100%的大面积钙钛矿薄膜。此外,将CA‐Br纳入ACA策略可以通过阳离子的空位钝化来明显保证高质量的电子连接。因此,对于p–i–n结构化的PSC(1.02 cm 2)和孔径面积为36 cm 2的模块,可实现17.49%的高功率转换效率(PCE)。显示PCE为12.67%,是所有基于有机CTL的PSC中最佳放大结果之一。这项工作表明,ACA策略可以成为通往大面积均匀界面层以及钙钛矿型太阳能电池放大的有前途的途径。
更新日期:2020-02-12
中文翻译:
高度可扩展且均匀的孔提取单层的协同共组装,用于按比例放大钙钛矿太阳能电池
所有具有有机电荷传输层(CTL)功能的钙钛矿太阳能电池(PSC)都具有明显的优势,但是其放大仍然是一个巨大的挑战,因为钙钛矿下面的有机CTL太薄,无法通过自旋形成大面积的均质层。涂层及其疏水性进一步阻碍了钙钛矿层溶液的制备。在此报道了前所未有的基于锚固的共组装(ACA)策略,该策略涉及亲水性铵盐CA-Br的协同共吸附用空穴传输的三苯胺衍生物获得可扩展的和可润湿的有机p-i–n结构化PSC单层空穴。ACA路线不仅可以使有机超薄CTL具有很高的均匀性,而且消除了不润湿的问题,从而可以实现覆盖率达100%的大面积钙钛矿薄膜。此外,将CA‐Br纳入ACA策略可以通过阳离子的空位钝化来明显保证高质量的电子连接。因此,对于p–i–n结构化的PSC(1.02 cm 2)和孔径面积为36 cm 2的模块,可实现17.49%的高功率转换效率(PCE)。显示PCE为12.67%,是所有基于有机CTL的PSC中最佳放大结果之一。这项工作表明,ACA策略可以成为通往大面积均匀界面层以及钙钛矿型太阳能电池放大的有前途的途径。