Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fabrication of Rugged and Reliable Fluidic Chips for Autonomous Environmental Analyzers Using Combined Thermal and Pressure Bonding of Polymethyl Methacrylate Layers.
ACS Omega ( IF 3.7 ) Pub Date : 2019-12-05 , DOI: 10.1021/acsomega.9b01918 Andrew Donohoe 1 , Gareth Lacour 1 , D Jed Harrison 2 , Dermot Diamond 1 , Margaret McCaul 1
ACS Omega ( IF 3.7 ) Pub Date : 2019-12-05 , DOI: 10.1021/acsomega.9b01918 Andrew Donohoe 1 , Gareth Lacour 1 , D Jed Harrison 2 , Dermot Diamond 1 , Margaret McCaul 1
Affiliation
The fabrication of highly reliable and rugged fluidic chips designed for use in autonomous analyses for nutrient monitoring is described. The chips are based on a two-layer configuration with the fluidic channels produced in one layer using precision micromilling. The second capping layer contains through holes for sample/standard and reagent addition and waste removal post-analysis. Two optically clear polymethyl methacrylate (PMMA) windows are integrated into the opaque PMMA chip, orthogonal to a 22.5 mm-long section of the channel downstream from a serpentine reagent and sample/standard mixing region. An LED source is coupled into the channel through one of the windows, and the light intensity is monitored with a photodiode located at the distal end of the channel outside the second optically clear window. Efficient coupling of the source through the channel to the detector is achieved using custom-designed alignment units produced using 3D printing. In contrast to fluidic chips produced using solvent adhesion, the thermal-/pressure-bonded simplified method presented removes the need for surface treatment. Optimization of the thermal/pressure conditions leads to very strong adhesion between the PMMA layers, requiring forces in the region of 2000 N to separate them, which is necessary for the use in long-term deployments. Profilometry imaging shows minimal evidence of channel distortion after bonding. Finally, we show the potential of these techniques for environmental applications. The fluidic chips were integrated into prototype nutrient analyzers that display no evidence of leakage in extensive lab tests involving 2500 phosphate measurements using the yellow (vanadomolybdophosphoric acid) method. Similarly, excellent analytical performance (LOD is 0.09 μM) is reported for a 28-day field trial comprising 188 in situ autonomous phosphate measurements (564 measurements) in total including calibration.
中文翻译:
使用聚甲基丙烯酸甲酯层的热键合和压力键合,为自主环境分析仪制造坚固耐用的可靠流体芯片。
描述了高度可靠且坚固耐用的流体芯片的制造,该芯片设计用于用于营养物监测的自主分析。切屑基于两层构造,其中使用精密微铣削在一层中产生流体通道。第二覆盖层包含用于样品/标准品和试剂添加以及分析后废物清除的通孔。将两个光学透明的聚甲基丙烯酸甲酯(PMMA)窗口集成到不透明的PMMA芯片中,该窗口与蛇形试剂和样品/标准混合区域下游的通道的22.5 mm长的截面正交。LED源通过其中一个窗口耦合到通道中,并且用位于第二光学透明窗口外部的通道的远端处的光电二极管监视光强度。通过使用3D打印生产的定制设计对准单元,可以将光源通过通道有效地耦合到检测器。与使用溶剂粘合生产的流体芯片相反,所提供的热/压粘合简化方法消除了对表面处理的需求。热/压力条件的优化导致PMMA层之间的粘合力非常强,需要2000 N左右的力才能将其分开,这对于长期部署是必不可少的。轮廓分析显示结合后通道畸变的迹象极少。最后,我们展示了这些技术在环境应用中的潜力。流体芯片被集成到原型营养分析仪中,在使用黄色(钒钼钼磷酸)方法进行的2500次磷酸盐测量的广泛实验室测试中,该分析仪没有显示泄漏的迹象。同样,据报道,一项为期28天的现场试验具有出色的分析性能(LOD为0.09μM),包括188个原位自主磷酸盐测量值(564个测量值),包括校准在内。
更新日期:2019-12-18
中文翻译:
使用聚甲基丙烯酸甲酯层的热键合和压力键合,为自主环境分析仪制造坚固耐用的可靠流体芯片。
描述了高度可靠且坚固耐用的流体芯片的制造,该芯片设计用于用于营养物监测的自主分析。切屑基于两层构造,其中使用精密微铣削在一层中产生流体通道。第二覆盖层包含用于样品/标准品和试剂添加以及分析后废物清除的通孔。将两个光学透明的聚甲基丙烯酸甲酯(PMMA)窗口集成到不透明的PMMA芯片中,该窗口与蛇形试剂和样品/标准混合区域下游的通道的22.5 mm长的截面正交。LED源通过其中一个窗口耦合到通道中,并且用位于第二光学透明窗口外部的通道的远端处的光电二极管监视光强度。通过使用3D打印生产的定制设计对准单元,可以将光源通过通道有效地耦合到检测器。与使用溶剂粘合生产的流体芯片相反,所提供的热/压粘合简化方法消除了对表面处理的需求。热/压力条件的优化导致PMMA层之间的粘合力非常强,需要2000 N左右的力才能将其分开,这对于长期部署是必不可少的。轮廓分析显示结合后通道畸变的迹象极少。最后,我们展示了这些技术在环境应用中的潜力。流体芯片被集成到原型营养分析仪中,在使用黄色(钒钼钼磷酸)方法进行的2500次磷酸盐测量的广泛实验室测试中,该分析仪没有显示泄漏的迹象。同样,据报道,一项为期28天的现场试验具有出色的分析性能(LOD为0.09μM),包括188个原位自主磷酸盐测量值(564个测量值),包括校准在内。