当前位置:
X-MOL 学术
›
Nat. Nanotechnol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Artificial water channels enable fast and selective water permeation through water-wire networks.
Nature Nanotechnology ( IF 38.1 ) Pub Date : 2019-12-16 , DOI: 10.1038/s41565-019-0586-8
Woochul Song 1, 2 , Himanshu Joshi 3 , Ratul Chowdhury 1 , Joseph S Najem 4, 5 , Yue-Xiao Shen 6 , Chao Lang 1 , Codey B Henderson 7 , Yu-Ming Tu 1, 2 , Megan Farell 1 , Megan E Pitz 4 , Costas D Maranas 1 , Paul S Cremer 7 , Robert J Hickey 8 , Stephen A Sarles 4 , Jun-Li Hou 9 , Aleksei Aksimentiev 3 , Manish Kumar 1, 10, 11, 12
Nature Nanotechnology ( IF 38.1 ) Pub Date : 2019-12-16 , DOI: 10.1038/s41565-019-0586-8
Woochul Song 1, 2 , Himanshu Joshi 3 , Ratul Chowdhury 1 , Joseph S Najem 4, 5 , Yue-Xiao Shen 6 , Chao Lang 1 , Codey B Henderson 7 , Yu-Ming Tu 1, 2 , Megan Farell 1 , Megan E Pitz 4 , Costas D Maranas 1 , Paul S Cremer 7 , Robert J Hickey 8 , Stephen A Sarles 4 , Jun-Li Hou 9 , Aleksei Aksimentiev 3 , Manish Kumar 1, 10, 11, 12
Affiliation
![]() |
Artificial water channels are synthetic molecules that aim to mimic the structural and functional features of biological water channels (aquaporins). Here we report on a cluster-forming organic nanoarchitecture, peptide-appended hybrid[4]arene (PAH[4]), as a new class of artificial water channels. Fluorescence experiments and simulations demonstrated that PAH[4]s can form, through lateral diffusion, clusters in lipid membranes that provide synergistic membrane-spanning paths for a rapid and selective water permeation through water-wire networks. Quantitative transport studies revealed that PAH[4]s can transport >109 water molecules per second per molecule, which is comparable to aquaporin water channels. The performance of these channels exceeds the upper bound limit of current desalination membranes by a factor of ~104, as illustrated by the water/NaCl permeability-selectivity trade-off curve. PAH[4]'s unique properties of a high water/solute permselectivity via cooperative water-wire formation could usher in an alternative design paradigm for permeable membrane materials in separations, energy production and barrier applications.
中文翻译:
人工水道能够通过水线网络快速且选择性地渗透水。
人工水通道是合成分子,旨在模仿生物水通道(水通道蛋白)的结构和功能特征。在这里,我们报告了一种形成簇的有机纳米结构,即肽附加杂化[4]芳烃(PAH[4]),作为一种新型的人工水通道。荧光实验和模拟表明,PAH[4] 可以通过横向扩散在脂膜中形成簇,为通过水线网络的快速和选择性水渗透提供协同跨膜路径。定量运输研究表明,PAH[4] 每分子每秒可运输 >109 个水分子,这与水通道蛋白水通道相当。这些通道的性能超出了当前脱盐膜的上限约 104 倍,如水/氯化钠渗透性-选择性权衡曲线所示。 PAH[4] 通过协同水线形成而具有高水/溶质选择性渗透性的独特特性,可以为分离、能源生产和屏障应用中的渗透膜材料带来替代设计范例。
更新日期:2019-12-17
中文翻译:
![](https://scdn.x-mol.com/jcss/images/paperTranslation.png)
人工水道能够通过水线网络快速且选择性地渗透水。
人工水通道是合成分子,旨在模仿生物水通道(水通道蛋白)的结构和功能特征。在这里,我们报告了一种形成簇的有机纳米结构,即肽附加杂化[4]芳烃(PAH[4]),作为一种新型的人工水通道。荧光实验和模拟表明,PAH[4] 可以通过横向扩散在脂膜中形成簇,为通过水线网络的快速和选择性水渗透提供协同跨膜路径。定量运输研究表明,PAH[4] 每分子每秒可运输 >109 个水分子,这与水通道蛋白水通道相当。这些通道的性能超出了当前脱盐膜的上限约 104 倍,如水/氯化钠渗透性-选择性权衡曲线所示。 PAH[4] 通过协同水线形成而具有高水/溶质选择性渗透性的独特特性,可以为分离、能源生产和屏障应用中的渗透膜材料带来替代设计范例。