当前位置: X-MOL 学术J. Phys. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ranking the Drop-Weight Impact Sensitivity of Common Explosives Using Arrhenius Chemical Rates Computed from Quantum Molecular Dynamics Simulations.
The Journal of Physical Chemistry A ( IF 2.7 ) Pub Date : 2019-12-30 , DOI: 10.1021/acs.jpca.9b10808
M J Cawkwell 1 , V W Manner 1
Affiliation  

Drop-weight impact tests are used routinely to characterize the handling safety of explosives. Numerous studies have sought to connect various physical and chemical properties of the energetic molecules and materials to their measured impact sensitivities. Wenograd in the early 1960s demonstrated that there is a strong dependency of the drop-heights on the critical temperatures required for explosives to undergo prompt reactions. Reactive quantum molecular dynamics simulations with the lanl31 density functional tight binding model have been used to compute the delay time before the thermal explosion of the secondary explosives erythritol tetranitrate (ETN), pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), cyclotetramethylene tetranitramine (HMX), trinitrotolune (TNT), and 3,3'-diamino-4,4'-azoxyfurazan (DAAF) as a function of the initial temperature and pressure. The delay time to explosion data are consistent with Arrhenius chemical kinetics, which is expected for thermally activated processes in materials and in accord with experimental measurements. The critical temperatures required for the materials to undergo prompt explosions display the same dependence on drop height as was observed by Wenograd. Hence, quantum-based reactive molecular dynamics simulations are potentially a tool for ranking the drop-weight impact sensitivity and handling safety of explosives.

中文翻译:

使用从量子分子动力学模拟计算的阿累尼乌斯化学速率,对普通炸药的落锤冲击敏感度进行排名。

跌落冲击试验通常用于表征炸药的处理安全性。大量研究试图将高能分子和材料的各种物理和化学性质与其测得的撞击敏感性联系起来。1960年代初的韦诺格勒(Wenograd)证明,跌落高度高度依赖炸药迅速反应所需的临界温度。使用lanl31密度泛函紧密结合模型进行的反应性量子分子动力学模拟已用于计算二次炸药赤藓醇四硝酸酯(ETN),季戊四醇四硝酸酯(PETN),环三亚甲基三硝胺(RDX),环四亚甲基四硝胺( HMX),三硝基甲苯(TNT)和3,3'-二氨基-4,4' -azoxyfurazan(DAAF)作为初始温度和压力的函数。爆炸数据的延迟时间与Arrhenius化学动力学一致,这是材料中的热活化过程所期望的,并且符合实验测量结果。材料迅速爆炸所需的临界温度对液滴高度的依赖性与Wenograd观察到的相同。因此,基于量子的反应分子动力学模拟可能是一种用于对落锤冲击敏感度和炸药处理安全性进行排名的工具。材料迅速爆炸所需的临界温度对液滴高度的依赖性与Wenograd观察到的相同。因此,基于量子的反应分子动力学模拟可能是一种用于对落锤冲击敏感度和炸药处理安全性进行排名的工具。材料迅速爆炸所需的临界温度对液滴高度的依赖性与Wenograd观察到的相同。因此,基于量子的反应分子动力学模拟可能是一种用于对落锤冲击敏感度和炸药处理安全性进行排名的工具。
更新日期:2019-12-30
down
wechat
bug