Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Protein components of ribonucleoprotein granules from Drosophila germ cells oligomerize and show distinct spatial organization during germline development.
Scientific Reports ( IF 3.8 ) Pub Date : 2019-12-16 , DOI: 10.1038/s41598-019-55747-x Hieu D L Vo 1 , Wahiduzzaman 1 , Samuel J Tindell 1 , Jimiao Zheng 1 , Ming Gao 2 , Alexey L Arkov 1
Scientific Reports ( IF 3.8 ) Pub Date : 2019-12-16 , DOI: 10.1038/s41598-019-55747-x Hieu D L Vo 1 , Wahiduzzaman 1 , Samuel J Tindell 1 , Jimiao Zheng 1 , Ming Gao 2 , Alexey L Arkov 1
Affiliation
The assembly of large RNA-protein granules occurs in germ cells of many animals and these germ granules have provided a paradigm to study structure-functional aspects of similar structures in different cells. Germ granules in Drosophila oocyte's posterior pole (polar granules) are composed of RNA, in the form of homotypic clusters, and proteins required for germline development. In the granules, Piwi protein Aubergine binds to a scaffold protein Tudor, which contains 11 Tudor domains. Using a super-resolution microscopy, we show that surprisingly, Aubergine and Tudor form distinct clusters within the same polar granules in early Drosophila embryos. These clusters partially overlap and, after germ cells form, they transition into spherical granules with the structural organization unexpected from these interacting proteins: Aubergine shell around the Tudor core. Consistent with the formation of distinct clusters, we show that Aubergine forms homo-oligomers and using all purified Tudor domains, we demonstrate that multiple domains, distributed along the entire Tudor structure, interact with Aubergine. Our data suggest that in polar granules, Aubergine and Tudor are assembled into distinct phases, partially mixed at their "interaction hubs", and that association of distinct protein clusters may be an evolutionarily conserved mechanism for the assembly of germ granules.
中文翻译:
果蝇生殖细胞核糖核蛋白颗粒的蛋白质成分低聚,并在种系发育过程中显示出独特的空间组织。
大RNA-蛋白质颗粒的组装发生在许多动物的生殖细胞中,这些生殖颗粒为研究不同细胞中相似结构的结构功能方面提供了范例。果蝇卵母细胞后极的细菌颗粒(极性颗粒)由同型簇形式的RNA和种系发育所需的蛋白质组成。在颗粒中,Piwi蛋白茄子与支架蛋白Tudor结合,后者包含11个Tudor域。使用超分辨率显微镜,我们发现令人惊讶的是,茄子和Tudor在早期果蝇胚胎的相同极性颗粒内形成了不同的簇。这些簇部分重叠,并且在形成生殖细胞后,它们转变为球形颗粒,其结构组织是这些相互作用蛋白无法预料的:茄子壳围绕帝舵(Tudor)核心。与不同簇的形成一致,我们表明茄子形成同源寡聚体并且使用所有纯化的Tudor结构域,我们证明沿着整个Tudor结构分布的多个结构域与茄子相互作用。我们的数据表明,在极性颗粒中,茄子和Tudor被组装成不同的相,在它们的“相互作用中心”部分混合,并且不同蛋白簇的结合可能是胚芽颗粒组装的进化保守机制。
更新日期:2019-12-17
中文翻译:
果蝇生殖细胞核糖核蛋白颗粒的蛋白质成分低聚,并在种系发育过程中显示出独特的空间组织。
大RNA-蛋白质颗粒的组装发生在许多动物的生殖细胞中,这些生殖颗粒为研究不同细胞中相似结构的结构功能方面提供了范例。果蝇卵母细胞后极的细菌颗粒(极性颗粒)由同型簇形式的RNA和种系发育所需的蛋白质组成。在颗粒中,Piwi蛋白茄子与支架蛋白Tudor结合,后者包含11个Tudor域。使用超分辨率显微镜,我们发现令人惊讶的是,茄子和Tudor在早期果蝇胚胎的相同极性颗粒内形成了不同的簇。这些簇部分重叠,并且在形成生殖细胞后,它们转变为球形颗粒,其结构组织是这些相互作用蛋白无法预料的:茄子壳围绕帝舵(Tudor)核心。与不同簇的形成一致,我们表明茄子形成同源寡聚体并且使用所有纯化的Tudor结构域,我们证明沿着整个Tudor结构分布的多个结构域与茄子相互作用。我们的数据表明,在极性颗粒中,茄子和Tudor被组装成不同的相,在它们的“相互作用中心”部分混合,并且不同蛋白簇的结合可能是胚芽颗粒组装的进化保守机制。