当前位置:
X-MOL 学术
›
Environ. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mineralization Enhancement of Pharmaceutical Contaminants by Radical-Based Oxidation Promoted by Oxide-Bound Metal Ions.
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2019-12-27 , DOI: 10.1021/acs.est.9b04542 Mahamadou Kamagate 1, 2 , Mathieu Pasturel 3 , Marcello Brigante 4 , Khalil Hanna 1, 5
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2019-12-27 , DOI: 10.1021/acs.est.9b04542 Mahamadou Kamagate 1, 2 , Mathieu Pasturel 3 , Marcello Brigante 4 , Khalil Hanna 1, 5
Affiliation
While the use of transition metal oxides in catalyzing advanced oxidation reactions has been widely investigated, very few reports have focused on how the preliminary contact of oxides with target compounds may affect the succession of reaction. In this study, we examined the adsorption and electron transfer reactions of two fluoroquinolones, flumequine (FLU), and norfloxacin (NOR), with goethite (α-FeOOH) or manganese (Mn) oxide, and their impact on the subsequent mineralization of target compounds using H2O2 or S2O82- under UVA irradiation. Intriguingly, higher total organic carbon (TOC) removal was achieved when antibiotics and metal oxides were allowed for preequilibration before starting the oxidation reaction. The rate and extent of TOC removal are strongly dependent on the molecule structure and the redox-active mineral used, and much less on the preequilibration time. This high efficiency can be ascribed to the presence of reduced metal ions, chemically or photochemically generated during the first stage, onto oxide minerals. Oxide-bound MnII plays a crucial role in catalyzing oxidant decomposition and then producing greater amounts of radical species through a photoassisted redox cycle, regardless of the underlying surface, MnIVO2 or MnIIIOOH. This finding will be of fundamental and practical significance to Mn-based oxidation reactions and wastewater treatment processes.
中文翻译:
氧化物结合的金属离子促进的基于自由基的氧化可增强药物污染物的矿化作用。
尽管已经广泛研究了过渡金属氧化物在催化高级氧化反应中的用途,但很少有报道集中于氧化物与目标化合物的初步接触如何影响反应的进行。在这项研究中,我们研究了氟铁矿(FLU)和诺氟沙星(NOR)与针铁矿(α-FeOOH)或锰(Mn)氧化物的吸附和电子转移反应,以及它们对随后靶标矿化的影响在UVA照射下使用H2O2或S2O82-制备化合物。有趣的是,在开始氧化反应之前,允许抗生素和金属氧化物进行预平衡时,可以获得更高的总有机碳(TOC)去除率。去除TOC的速度和程度在很大程度上取决于分子结构和所使用的氧化还原活性矿物质,而更少的预平衡时间。这种高效率可以归因于在第一阶段在氧化物矿物上以化学或光化学方式生成的还原金属离子的存在。与氧化物结合的MnII在催化氧化剂分解,然后通过光辅助氧化还原循环产生大量自由基物质方面起着至关重要的作用,而与下面的表面MnIVO2或MnIIIOOH无关。这一发现对基于锰的氧化反应和废水处理工艺具有根本和实际的意义。与氧化物结合的MnII在催化氧化剂分解,然后通过光辅助氧化还原循环产生大量自由基物质方面起着至关重要的作用,而与下面的表面MnIVO2或MnIIIOOH无关。这一发现对基于锰的氧化反应和废水处理工艺具有根本和实际的意义。与氧化物结合的MnII在催化氧化剂分解,然后通过光辅助氧化还原循环产生大量自由基物质方面起着至关重要的作用,而与下面的表面MnIVO2或MnIIIOOH无关。这一发现对基于锰的氧化反应和废水处理工艺具有根本和实际的意义。
更新日期:2019-12-27
中文翻译:
氧化物结合的金属离子促进的基于自由基的氧化可增强药物污染物的矿化作用。
尽管已经广泛研究了过渡金属氧化物在催化高级氧化反应中的用途,但很少有报道集中于氧化物与目标化合物的初步接触如何影响反应的进行。在这项研究中,我们研究了氟铁矿(FLU)和诺氟沙星(NOR)与针铁矿(α-FeOOH)或锰(Mn)氧化物的吸附和电子转移反应,以及它们对随后靶标矿化的影响在UVA照射下使用H2O2或S2O82-制备化合物。有趣的是,在开始氧化反应之前,允许抗生素和金属氧化物进行预平衡时,可以获得更高的总有机碳(TOC)去除率。去除TOC的速度和程度在很大程度上取决于分子结构和所使用的氧化还原活性矿物质,而更少的预平衡时间。这种高效率可以归因于在第一阶段在氧化物矿物上以化学或光化学方式生成的还原金属离子的存在。与氧化物结合的MnII在催化氧化剂分解,然后通过光辅助氧化还原循环产生大量自由基物质方面起着至关重要的作用,而与下面的表面MnIVO2或MnIIIOOH无关。这一发现对基于锰的氧化反应和废水处理工艺具有根本和实际的意义。与氧化物结合的MnII在催化氧化剂分解,然后通过光辅助氧化还原循环产生大量自由基物质方面起着至关重要的作用,而与下面的表面MnIVO2或MnIIIOOH无关。这一发现对基于锰的氧化反应和废水处理工艺具有根本和实际的意义。与氧化物结合的MnII在催化氧化剂分解,然后通过光辅助氧化还原循环产生大量自由基物质方面起着至关重要的作用,而与下面的表面MnIVO2或MnIIIOOH无关。这一发现对基于锰的氧化反应和废水处理工艺具有根本和实际的意义。