当前位置:
X-MOL 学术
›
Chem. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Combined Experimental and Computational Study of Ce-Doped La3Zr2Li7O12 Garnet Solid-State Electrolyte
Chemistry of Materials ( IF 7.2 ) Pub Date : 2019-12-27 , DOI: 10.1021/acs.chemmater.9b03526
Bo Dong 1 , Stephen R. Yeandel 2 , Pooja Goddard 2 , Peter R. Slater 1
Chemistry of Materials ( IF 7.2 ) Pub Date : 2019-12-27 , DOI: 10.1021/acs.chemmater.9b03526
Bo Dong 1 , Stephen R. Yeandel 2 , Pooja Goddard 2 , Peter R. Slater 1
Affiliation
![]() |
Li-containing garnet materials have been attracting considerable interest as potential solid-state electrolytes for Li ion batteries. In such Ln3M2LixO12 (Ln = lanthanide, alkaline earth; M = Zr, Hf, Sn, Nb, Ta, Sb, Bi, Te), the best Li ion conductivity is observed for Li contents, x, just below the maximum 7.0. The decrease in conductivity for x = 7.0 systems is related to Li ordering (cell changes from cubic to tetragonal) to prevent too short Li–Li interactions. In this work, we report a combined experimental and modeling study of Ce4+ doping in La3Zr2Li7O12. We show for the first time that Ce4+ can be doped onto the Zr4+ site in this material. This doping strategy results in a reduction in the tetragonal distortion as well as a lowering of the temperature of the tetragonal–cubic phase transition, attributed to the increase in cell size reducing Li–Li interaction strain. Coupled with these changes, the conductivity shows a significant (1.5 orders of magnitude) improvement. Furthermore, the Ce doping also reduces the interfacial resistance (388 Ω cm2 for Li7La3Z1.75Ce0.25O12) in contact with Li metal, giving additional potential benefits to this doping strategy. The long-term cycling stability of a Li//garnet//Li symmetric cell over 190 h has been demonstrated.
中文翻译:
Ce掺杂La 3 Zr 2 Li 7 O 12石榴石固态电解质的组合实验与计算研究
含锂的石榴石材料作为锂离子电池的潜在固态电解质已引起了广泛的关注。在这样的Ln 3 M 2 Li x O 12(Ln =镧系元素,碱土金属; M = Zr,Hf,Sn,Nb,Ta,Sb,Bi,Te)中,对于Li含量x观察到最佳的Li离子电导率。略低于最高7.0。对于x = 7.0的系统,电导率的下降与Li有序化有关(单元从立方变为四方),以防止Li-Li相互作用太短。在这项工作中,我们报告了La 3 Zr 2 Li 7 O 12中Ce 4+掺杂的组合实验和模型研究。。我们首次证明可以在这种材料中将Ce 4+掺杂到Zr 4+位置上。这种掺杂策略导致四方畸变的减小以及四方-立方相变温度的降低,这归因于单元尺寸的增加,减小了Li-Li相互作用应变。加上这些变化,电导率显示出明显的改善(1.5个数量级)。此外,铈掺杂也降低了界面电阻(Ω388厘米2对Li 7的La 3 ž 1.75 Ce的0。25 Ô 12)与锂金属接触,从而为这种掺杂策略带来了更多潜在的好处。已经证明了Li //石榴石// Li对称电池在190小时内的长期循环稳定性。
更新日期:2019-12-29
中文翻译:

Ce掺杂La 3 Zr 2 Li 7 O 12石榴石固态电解质的组合实验与计算研究
含锂的石榴石材料作为锂离子电池的潜在固态电解质已引起了广泛的关注。在这样的Ln 3 M 2 Li x O 12(Ln =镧系元素,碱土金属; M = Zr,Hf,Sn,Nb,Ta,Sb,Bi,Te)中,对于Li含量x观察到最佳的Li离子电导率。略低于最高7.0。对于x = 7.0的系统,电导率的下降与Li有序化有关(单元从立方变为四方),以防止Li-Li相互作用太短。在这项工作中,我们报告了La 3 Zr 2 Li 7 O 12中Ce 4+掺杂的组合实验和模型研究。。我们首次证明可以在这种材料中将Ce 4+掺杂到Zr 4+位置上。这种掺杂策略导致四方畸变的减小以及四方-立方相变温度的降低,这归因于单元尺寸的增加,减小了Li-Li相互作用应变。加上这些变化,电导率显示出明显的改善(1.5个数量级)。此外,铈掺杂也降低了界面电阻(Ω388厘米2对Li 7的La 3 ž 1.75 Ce的0。25 Ô 12)与锂金属接触,从而为这种掺杂策略带来了更多潜在的好处。已经证明了Li //石榴石// Li对称电池在190小时内的长期循环稳定性。