当前位置:
X-MOL 学术
›
Adv. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
MoS2 and Perylene Derivative Based Type‐II Heterostructure: Bandgap Engineering and Giant Photoluminescence Enhancement
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2019-12-12 , DOI: 10.1002/admi.201901197 Sk Md Obaidulla 1 , Mohammad Rezwan Habib 1 , Yahya Khan 1 , Yuhan Kong 2 , Tao Liang 2 , Mingsheng Xu 1, 3
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2019-12-12 , DOI: 10.1002/admi.201901197 Sk Md Obaidulla 1 , Mohammad Rezwan Habib 1 , Yahya Khan 1 , Yuhan Kong 2 , Tao Liang 2 , Mingsheng Xu 1, 3
Affiliation
2D transition metal dichalcogenides (TMDs) are a promising material system for optoelectronic applications. However, their key figure of merit, the room‐temperature photoluminescence (PL), is extremely low. To overcome this challenge, TMDs need interfacing with other semiconducting materials and discover the underlying physical phenomena. Herein, the optical properties and PL mechanisms of molybdenum disulfide‐organic perylene derivative (PDI/MoS2) based type‐II heterostructures, i.e., PTCDA/MoS2 and PTCDI‐Ph/MoS2, are studied experimentally and theoretically. The PL of MoS2 in PTCDA/MoS2 is enhanced, while a dramatic PL quenching of MoS2 is observed on PTCDI‐Ph/MoS2. The significant radiative PL enhancement of PTCDA/MoS2 is primarily due to the bandgap reduction, high exciton/trion ratio, and epitaxial growth of PTCDA. In contrast, “trap‐like” states in heterointerface, relatively low exciton/trion ratio, and less ordered morphology are responsible for PL quenching of PTCDI‐Ph/MoS2 heterostructure. These findings would provoke a new way to engineer the light‐matter interactions in organic/TMD hybrids, which enables light‐emitting, light‐harvesting applications, and neuromorphic devices.
中文翻译:
基于MoS2和Per衍生物的II型异质结构:带隙工程和巨大的光致发光增强
2D过渡金属二硫化碳(TMD)是用于光电应用的有前途的材料系统。但是,它们的关键性能指标是室温光致发光(PL)极低。为了克服这一挑战,TMD需要与其他半导体材料连接并发现潜在的物理现象。在本文中,通过实验和理论研究了基于二硫化钼-有机per衍生物(PDI / MoS 2)的II型异质结构,即PTCDA / MoS 2和PTCDI-Ph / MoS 2的光学性质和PL机理。PTCDA / MoS 2中MoS 2的PL增强,而在PTCDI-Ph / MoS 2上观察到MoS 2的PL急剧淬灭。PTCDA / MoS 2的辐射PL的显着增强主要归因于PTCDA的带隙减小,高激子/三价比和外延生长。相比之下,异质界面中的“陷阱状”状态,较低的激子/三价比和较少的有序形态是PTCDI-Ph / MoS 2异质结构的PL猝灭的原因。这些发现将激发一种新的方法来设计有机/ TMD杂化物中的光-物质相互作用,从而实现发光,光收集应用和神经形态设备。
更新日期:2019-12-12
中文翻译:
基于MoS2和Per衍生物的II型异质结构:带隙工程和巨大的光致发光增强
2D过渡金属二硫化碳(TMD)是用于光电应用的有前途的材料系统。但是,它们的关键性能指标是室温光致发光(PL)极低。为了克服这一挑战,TMD需要与其他半导体材料连接并发现潜在的物理现象。在本文中,通过实验和理论研究了基于二硫化钼-有机per衍生物(PDI / MoS 2)的II型异质结构,即PTCDA / MoS 2和PTCDI-Ph / MoS 2的光学性质和PL机理。PTCDA / MoS 2中MoS 2的PL增强,而在PTCDI-Ph / MoS 2上观察到MoS 2的PL急剧淬灭。PTCDA / MoS 2的辐射PL的显着增强主要归因于PTCDA的带隙减小,高激子/三价比和外延生长。相比之下,异质界面中的“陷阱状”状态,较低的激子/三价比和较少的有序形态是PTCDI-Ph / MoS 2异质结构的PL猝灭的原因。这些发现将激发一种新的方法来设计有机/ TMD杂化物中的光-物质相互作用,从而实现发光,光收集应用和神经形态设备。