当前位置:
X-MOL 学术
›
Energy Sci. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhanced oil recovery mechanism and recovery performance of micro‐gel particle suspensions by microfluidic experiments
Energy Science & Engineering ( IF 3.5 ) Pub Date : 2019-12-02 , DOI: 10.1002/ese3.563 Wenhai Lei 1 , Tong Liu 1 , Chiyu Xie 2 , Haien Yang 3 , Tianjiang Wu 3 , Moran Wang 1
Energy Science & Engineering ( IF 3.5 ) Pub Date : 2019-12-02 , DOI: 10.1002/ese3.563 Wenhai Lei 1 , Tong Liu 1 , Chiyu Xie 2 , Haien Yang 3 , Tianjiang Wu 3 , Moran Wang 1
Affiliation
Micro‐gel particle suspensions (MGPS) have been proposed for enhanced oil recovery (EOR) in reservoirs with harsh conditions in recent years, yet the mechanisms are still not clear because of the complex property of MGPS and the complex geometry of rocks. In this paper, the micro‐gel particle‐based flooding has been studied by our microfluidic experiments on both bi‐permeability micromodels and reservoir‐on‐a‐chip. A method for reservoir‐on‐a‐chip design has been proposed based on QSGS (quartet structure generation set) to ensure that the flow geometry on chip owns the most important statistical features of real rock microstructures. In the micromodel experiments with heterogeneous microstructures, even if the MGPS has the same macroscopic rheology as the hydrolyzed polyacrylamides (HPAM) solution for flooding, MGPS may lead to significant fluctuations of pressure field caused by the nonuniform concentration distribution of particles. In the reservoir‐on‐a‐chip experiments, clustered oil trapped in the swept pores can be recovered by MGPS because of pressure fluctuation, which hardly happens in the HPAM flooding. Compared with the water flooding, the HPAM solution flooding leads to approximately 17% incremental oil recovery, while the MGPS results in approximately 49.8% incremental oil recovery in the laboratory.
中文翻译:
通过微流控实验提高油回收机理和微凝胶颗粒悬浮液的回收性能
近年来,人们提出了微凝胶颗粒悬浮液(MGPS)来提高恶劣条件油藏的采油率(EOR),但由于MGPS的复杂特性和复杂的岩石几何形状,其机理仍不清楚。在本文中,通过我们的微流体实验,研究了基于微凝胶颗粒的双渗透微模型和片上油藏。提出了一种基于QSGS(四方构造生成集)的片上油藏设计方法,以确保片上的流动几何形状具有真实岩石微观结构的最重要统计特征。在具有异质微观结构的微模型实验中,即使MGPS的宏观流变学与用于注水的水解聚丙烯酰胺(HPAM)溶液相同,MGPS可能会由于颗粒浓度分布不均匀而导致压力场发生明显波动。在片上油藏实验中,由于压力波动,MGPS可以回收被困在扫孔中的集束油,而在HPAM驱中几乎不会发生这种波动。与注水相比,HPAM解决方案注水可增加大约17%的采油量,而MGPS在实验室中可以增加大约49.8%的采油量。
更新日期:2019-12-02
中文翻译:
通过微流控实验提高油回收机理和微凝胶颗粒悬浮液的回收性能
近年来,人们提出了微凝胶颗粒悬浮液(MGPS)来提高恶劣条件油藏的采油率(EOR),但由于MGPS的复杂特性和复杂的岩石几何形状,其机理仍不清楚。在本文中,通过我们的微流体实验,研究了基于微凝胶颗粒的双渗透微模型和片上油藏。提出了一种基于QSGS(四方构造生成集)的片上油藏设计方法,以确保片上的流动几何形状具有真实岩石微观结构的最重要统计特征。在具有异质微观结构的微模型实验中,即使MGPS的宏观流变学与用于注水的水解聚丙烯酰胺(HPAM)溶液相同,MGPS可能会由于颗粒浓度分布不均匀而导致压力场发生明显波动。在片上油藏实验中,由于压力波动,MGPS可以回收被困在扫孔中的集束油,而在HPAM驱中几乎不会发生这种波动。与注水相比,HPAM解决方案注水可增加大约17%的采油量,而MGPS在实验室中可以增加大约49.8%的采油量。