当前位置:
X-MOL 学术
›
Chem. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Tracking the Fluorescence Lifetimes of Cesium Lead Halide Perovskite Nanocrystals During Their Synthesis Using a Fully Automated Optofluidic Platform
Chemistry of Materials ( IF 7.2 ) Pub Date : 2019-12-20 , DOI: 10.1021/acs.chemmater.9b03438 Ioannis Lignos 1 , Richard M. Maceiczyk 1 , Maksym V. Kovalenko 2, 3 , Stavros Stavrakis 1
Chemistry of Materials ( IF 7.2 ) Pub Date : 2019-12-20 , DOI: 10.1021/acs.chemmater.9b03438 Ioannis Lignos 1 , Richard M. Maceiczyk 1 , Maksym V. Kovalenko 2, 3 , Stavros Stavrakis 1
Affiliation
Semiconductive metal halide perovskites have opened exciting opportunities in a range of optoelectronic applications including solar cells, photodetectors, lasers, and light emitting devices. Recently, all-inorganic cesium lead halide (CsPbX3; X = Cl, Br, I) nanocrystals have become attractive light sources due to their high photoluminescence quantum yields, narrow emission linewidths, and emission color tunable over the entire visible region. Their radiative rates are higher (i.e., luminescence lifetimes shorter) than those of more conventional quantum dots, making perovskite NCs brighter emitters, highly attractive as both classical and quantum light sources. Multiple factors—primarily synthesis parameters and postsynthetic experience—govern the observed radiative lifetime and other optical characteristics. High-throughput experimentation in microfluidic platforms equipped with in-line optical characterization had proven to be highly instrumental for rapid and accurate assessment of optical properties, mainly in a steady-state mode. Thus far, in-line measurement of the radiative lifetimes and hence the proper use of high-throughput experimentation for tailored engineering of radiative rates have been elusive. Herein, we showcase a fully automated optofluidic platform that integrates time-correlated single photon counting measurements in droplet-based flow for the rigorous extraction of fluorescence lifetimes of CsPbX3 nanocrystals. The sensitivity of the experimental setup allows for measurements at a single-droplet level. Such concurrent time-resolved photoluminescence allows mapping the parametric space in a time-efficient manner (∼1000 lifetime measurements in 5 h of operation) and with high reagent economy (200 nL reaction volume per measurement). We elucidated the effects of composition and ratios of judiciously chosen reagents, as well as temperature on the fluorescence lifetimes (5–42 ns). Specifically, the average lifetime as well as the emission spectra of all halide compositions tested was strongly dependent on Pb-to-Cs variations. Accordingly a correlation between the steady-state luminescence amplitude and fluorescence lifetimes was established, thus providing a simple method to differentiate between the photoluminescence quantum yields, concentration effects, and effects due to the nonradiative recombination at the surface traps. Such a microfluidic tool will aid in analyzing the physicochemical and photophysical properties of diverse perovskite nanocrystals and other luminescent materials produced in the liquid-state synthesis.
中文翻译:
使用全自动光流平台跟踪卤化铯铅钙钛矿纳米晶体的合成过程中的荧光寿命。
半导体金属卤化物钙钛矿为包括太阳能电池,光电探测器,激光器和发光器件在内的一系列光电应用打开了令人兴奋的机遇。最近,全无机卤化铯铯(CsPbX 3; X = Cl,Br,I)纳米晶体由于其高的光致发光量子产率,窄的发射线宽和在整个可见光区域可调的发射颜色而成为吸引人的光源。与传统的量子点相比,它们的辐射速率更高(即发光寿命更短),从而使钙钛矿型NC的发射器更亮,作为经典光源和量子光源都具有很高的吸引力。多个因素(主要是合成参数和合成后的经验)控制着观察到的辐射寿命和其他光学特性。事实证明,在配备有在线光学表征的微流体平台上进行的高通量实验对于快速和准确地评估光学特性(主要是在稳态模式下)非常有用。迄今,辐射寿命的在线测量以及因此无法通过高通量实验对辐射率进行量身定制的工程。在这里,我们展示了一个全自动的光流体平台,该平台将与时间相关的单光子计数测量结果集成到基于液滴的流中,以严格提取CsPbX的荧光寿命3纳米晶体。实验装置的灵敏度允许在单液滴水平上进行测量。这种同时进行的时间分辨的光致发光允许以时间高效的方式(在5小时的操作中进行约1000次寿命测量)和具有高试剂经济性(每次测量200 nL反应体积)来映射参数空间。我们阐明了明智选择的试剂的组成和比例以及温度对荧光寿命(5-42 ns)的影响。具体而言,所有测试的卤化物组合物的平均寿命以及发射光谱在很大程度上取决于Pb-to-Cs的变化。因此,建立了稳态发光幅度与荧光寿命之间的相关性,从而提供了一种区分光致发光量子产率的简单方法,浓度效应,以及由于表面陷阱的非辐射重组而产生的效应。这种微流体工具将有助于分析液态合成中产生的各种钙钛矿纳米晶体和其他发光材料的物理化学和光物理性质。
更新日期:2019-12-21
中文翻译:
使用全自动光流平台跟踪卤化铯铅钙钛矿纳米晶体的合成过程中的荧光寿命。
半导体金属卤化物钙钛矿为包括太阳能电池,光电探测器,激光器和发光器件在内的一系列光电应用打开了令人兴奋的机遇。最近,全无机卤化铯铯(CsPbX 3; X = Cl,Br,I)纳米晶体由于其高的光致发光量子产率,窄的发射线宽和在整个可见光区域可调的发射颜色而成为吸引人的光源。与传统的量子点相比,它们的辐射速率更高(即发光寿命更短),从而使钙钛矿型NC的发射器更亮,作为经典光源和量子光源都具有很高的吸引力。多个因素(主要是合成参数和合成后的经验)控制着观察到的辐射寿命和其他光学特性。事实证明,在配备有在线光学表征的微流体平台上进行的高通量实验对于快速和准确地评估光学特性(主要是在稳态模式下)非常有用。迄今,辐射寿命的在线测量以及因此无法通过高通量实验对辐射率进行量身定制的工程。在这里,我们展示了一个全自动的光流体平台,该平台将与时间相关的单光子计数测量结果集成到基于液滴的流中,以严格提取CsPbX的荧光寿命3纳米晶体。实验装置的灵敏度允许在单液滴水平上进行测量。这种同时进行的时间分辨的光致发光允许以时间高效的方式(在5小时的操作中进行约1000次寿命测量)和具有高试剂经济性(每次测量200 nL反应体积)来映射参数空间。我们阐明了明智选择的试剂的组成和比例以及温度对荧光寿命(5-42 ns)的影响。具体而言,所有测试的卤化物组合物的平均寿命以及发射光谱在很大程度上取决于Pb-to-Cs的变化。因此,建立了稳态发光幅度与荧光寿命之间的相关性,从而提供了一种区分光致发光量子产率的简单方法,浓度效应,以及由于表面陷阱的非辐射重组而产生的效应。这种微流体工具将有助于分析液态合成中产生的各种钙钛矿纳米晶体和其他发光材料的物理化学和光物理性质。