Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Single Photon Randomness based on a Defect Center in Diamond.
Scientific Reports ( IF 3.8 ) Pub Date : 2019-12-05 , DOI: 10.1038/s41598-019-54594-0 Xing Chen 1 , Johannes N Greiner 1 , Jörg Wrachtrup 1, 2 , Ilja Gerhardt 1
Scientific Reports ( IF 3.8 ) Pub Date : 2019-12-05 , DOI: 10.1038/s41598-019-54594-0 Xing Chen 1 , Johannes N Greiner 1 , Jörg Wrachtrup 1, 2 , Ilja Gerhardt 1
Affiliation
The prototype of a quantum random number generator is a single photon which impinges onto a beam splitter and is then detected by single photon detectors at one of the two output paths. Prior to detection, the photon is in a quantum mechanical superposition state of the two possible outcomes with -ideally- equal amplitudes until its position is determined by measurement. When the two output modes are observed by a single photon detector, the generated clicks can be interpreted as ones and zeros - and a raw random bit stream is obtained. Here we implement such a random bit generator based on single photons from a defect center in diamond. We investigate the single photon emission of the defect center by an anti-bunching measurement. This certifies the "quantumness" of the supplied photonic input state, while the random "decision" is still based on the vacuum fluctuations at the open port of the beam-splitter. Technical limitations, such as intensity fluctuations, mechanical drift, and bias are discussed. A number of ways to suppress such unwanted effects, and an a priori entropy estimation are presented. The single photon nature allows for a characterization of the non-classicality of the source, and allows to determine a background fraction. Due to the NV-center's superior stability and optical properties, we can operate the generator under ambient conditions around the clock. We present a true 24/7 operation of the implemented random bit generator.
中文翻译:
基于钻石缺陷中心的单光子随机性。
量子随机数发生器的原型是一个单光子,它撞击在分束器上,然后在两个输出路径之一处被单光子检测器检测到。在检测之前,光子处于两个可能结果的量子力学叠加状态,振幅理想情况下相等,直到通过测量确定其位置为止。当单个光子检测器观察到两种输出模式时,所产生的喀哒声可以解释为一和零-并获得原始随机比特流。在这里,我们基于钻石缺陷中心中的单个光子实现了这样的随机位发生器。我们通过反聚束测量研究了缺陷中心的单光子发射。这证明了所提供的光子输入状态的“量子”,而随机的“决定” 仍然基于分束器开口处的真空波动。讨论了技术限制,例如强度波动,机械漂移和偏差。提出了许多抑制这种不想要的影响的方法,以及先验熵估计。单光子性质允许表征光源的非经典性,并允许确定背景分数。由于NV中心具有出色的稳定性和光学特性,因此我们可以全天候在环境条件下运行发生器。我们介绍了已实现的随机位发生器的真实24/7操作。提出了许多抑制这种不想要的影响的方法,以及先验熵估计。单光子性质允许表征光源的非经典性,并允许确定背景分数。由于NV中心具有出色的稳定性和光学特性,因此我们可以全天候在环境条件下运行发生器。我们介绍了已实现的随机位发生器的真实24/7操作。提出了许多抑制这种不想要的影响的方法,以及先验熵估计。单光子性质允许表征光源的非经典性,并允许确定背景分数。由于NV中心具有出色的稳定性和光学特性,因此我们可以全天候在环境条件下运行发生器。我们介绍了已实现的随机位发生器的真实24/7操作。
更新日期:2019-12-05
中文翻译:
基于钻石缺陷中心的单光子随机性。
量子随机数发生器的原型是一个单光子,它撞击在分束器上,然后在两个输出路径之一处被单光子检测器检测到。在检测之前,光子处于两个可能结果的量子力学叠加状态,振幅理想情况下相等,直到通过测量确定其位置为止。当单个光子检测器观察到两种输出模式时,所产生的喀哒声可以解释为一和零-并获得原始随机比特流。在这里,我们基于钻石缺陷中心中的单个光子实现了这样的随机位发生器。我们通过反聚束测量研究了缺陷中心的单光子发射。这证明了所提供的光子输入状态的“量子”,而随机的“决定” 仍然基于分束器开口处的真空波动。讨论了技术限制,例如强度波动,机械漂移和偏差。提出了许多抑制这种不想要的影响的方法,以及先验熵估计。单光子性质允许表征光源的非经典性,并允许确定背景分数。由于NV中心具有出色的稳定性和光学特性,因此我们可以全天候在环境条件下运行发生器。我们介绍了已实现的随机位发生器的真实24/7操作。提出了许多抑制这种不想要的影响的方法,以及先验熵估计。单光子性质允许表征光源的非经典性,并允许确定背景分数。由于NV中心具有出色的稳定性和光学特性,因此我们可以全天候在环境条件下运行发生器。我们介绍了已实现的随机位发生器的真实24/7操作。提出了许多抑制这种不想要的影响的方法,以及先验熵估计。单光子性质允许表征光源的非经典性,并允许确定背景分数。由于NV中心具有出色的稳定性和光学特性,因此我们可以全天候在环境条件下运行发生器。我们介绍了已实现的随机位发生器的真实24/7操作。