当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Controllable Design of MoS2 Nanosheets Grown on Nitrogen-Doped Branched TiO2 /C Nanofibers: Toward Enhanced Sodium Storage Performance Induced by Pseudocapacitance Behavior.
Small ( IF 13.0 ) Pub Date : 2019-11-28 , DOI: 10.1002/smll.201904589
Ling Wang 1 , Guorui Yang 1, 2, 3 , Jianan Wang 1, 2, 3 , Shengjie Peng 4 , Wei Yan 1 , Seeram Ramakrishna 4
Affiliation  

In this work, expanded MoS2 nanosheets grown on nitrogen-doped branched TiO2 /C nanofibers (NBT/C@MoS2 NFs) are prepared through electrospinning and hydrothermal treatment method as anode materials for sodium-ion batteries (SIBs). The continuous 1D branched TiO2 /C nanofibers provide a large surface area to grow expanded MoS2 nanosheets and enhance the electronic conductivity and cycling stability of the electrode. The large surface area and doping of nitrogen can facilitate the transfer of both Na+ ions and electrons. With the merits of these unique design and extrinsic pseudocapacitance behavior, the NBT/C@MoS2 NFs can deliver ultralong cycle stability of 448.2 mA h g-1 at 200 mA g-1 after 600 cycles. Even at a high rate of 2000 mA g-1 , a reversible capacity of 258.3 mA h g-1 can still be achieved. The kinetic analysis demonstrates that pseudocapacitive contribution is the major factor to achieve excellent rate performance. The rational design and excellent electrochemical performance endow the NBT/C@MoS2 NFs with potentials as promising anode materials for SIBs.

中文翻译:

掺氮支化TiO2 / C纳米纤维上生长的MoS2纳米片的可控设计:旨在提高由伪电容行为引起的钠储存性能。

在这项工作中,通过静电纺丝和水热处理方法,在掺氮的分枝TiO2 / C纳米纤维(NBT / C @ MoS2 NFs)上制备了扩展的MoS2纳米片,作为钠离子电池(SIB)的负极材料。连续的一维支化的TiO2 / C纳米纤维提供了较大的表面积,可以生长膨胀的MoS2纳米片,并增强电极的电子导电性和循环稳定性。大的表面积和氮的掺杂可以促进Na +离子和电子的转移。凭借这些独特设计和外部伪电容特性的优点,NBT / C @ MoS2 NF在600个循环后可在200 mA g-1下提供448.2 mA h g-1的超长循环稳定性。即使以2000 mA g-1的高速率运行,仍可实现258.3 mA h g-1的可逆容量。动力学分析表明,伪电容的贡献是实现优异速率性能的主要因素。合理的设计和出色的电化学性能使NBT / C @ MoS2 NF具有成为SIB理想阳极材料的潜力。
更新日期:2020-01-09
down
wechat
bug