当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Coupling Topological Insulator SnSb2 Te4 Nanodots with Highly Doped Graphene for High-Rate Energy Storage.
Advanced Materials ( IF 27.4 ) Pub Date : 2019-11-28 , DOI: 10.1002/adma.201905632 Zhibin Wu 1, 2 , Gemeng Liang 1 , Wei Kong Pang 1 , Tengfei Zhou 1 , Zhenxiang Cheng 1 , Wenchao Zhang 1 , Ye Liu 1 , Bernt Johannessen 3 , Zaiping Guo 1, 2
Advanced Materials ( IF 27.4 ) Pub Date : 2019-11-28 , DOI: 10.1002/adma.201905632 Zhibin Wu 1, 2 , Gemeng Liang 1 , Wei Kong Pang 1 , Tengfei Zhou 1 , Zhenxiang Cheng 1 , Wenchao Zhang 1 , Ye Liu 1 , Bernt Johannessen 3 , Zaiping Guo 1, 2
Affiliation
Topological insulators have spurred worldwide interest, but their advantageous properties have scarcely been explored in terms of electrochemical energy storage, and their high-rate capability and long-term cycling stability still remain a significant challenge to harvest. p-Type topological insulator SnSb2 Te4 nanodots anchoring on few-layered graphene (SnSb2 Te4 /G) are synthesized as a stable anode for high-rate lithium-ion batteries and potassium-ion batteries through a ball-milling method. These SnSb2 Te4 /G composite electrodes show ultralong cycle lifespan (478 mAh g-1 at 1 A g-1 after 1000 cycles) and excellent rate capability (remaining 373 mAh g-1 even at 10 A g-1 ) in Li-ion storage owing to the rapid ion transport accelerated by the PN heterojunction, virtual electron highways provided by the conductive topological surface state, and extraordinary pseudocapacitive contribution, whose excellent phase reversibility is confirmed by synchrotron in situ X-ray powder diffraction. Surprisingly, durable lifespan even at practical levels of mass loading (>10 mg cm-2 ) for Li-ion storage and excellent K-ion storage performance are also observed. This work provides new insights for designing high-rate electrode materials by boosting conductive topological surfaces, atomic doping, and the interface interaction.
中文翻译:
拓扑绝缘体SnSb2 Te4纳米点与高掺杂石墨烯的耦合以实现高速率的能量存储。
拓扑绝缘子引起了世界范围的关注,但是就电化学储能而言,几乎没有探索它们的有利性能,并且其高倍率性能和长期循环稳定性仍然是收获的重大挑战。通过球磨法合成了固定在几层石墨烯上的p型拓扑绝缘体SnSb2 Te4纳米点(SnSb2 Te4 / G)作为稳定的阳极,用于高速率锂离子电池和钾离子电池。这些SnSb2 Te4 / G复合电极在锂离子电池中显示出超长的循环寿命(1000次循环后在1 A g-1时为478 mAh g-1)和出色的倍率容量(即使在10 A g-1时仍为373 mAh g-1)。由于PN异质结加速了离子的快速迁移,因此,导电拓扑表面态提供了虚拟电子高速公路,以及出色的拟电容性贡献,其优异的相可逆性已通过同步加速器原位X射线粉末衍射得到了证实。令人惊讶地,甚至在用于锂离子存储的实际质量负载水平(> 10 mg cm-2)下,也观察到了持久的使用寿命,并具有出色的K离子存储性能。这项工作通过提高导电拓扑表面,原子掺杂和界面相互作用,为设计高速率电极材料提供了新的见识。
更新日期:2020-01-15
中文翻译:
拓扑绝缘体SnSb2 Te4纳米点与高掺杂石墨烯的耦合以实现高速率的能量存储。
拓扑绝缘子引起了世界范围的关注,但是就电化学储能而言,几乎没有探索它们的有利性能,并且其高倍率性能和长期循环稳定性仍然是收获的重大挑战。通过球磨法合成了固定在几层石墨烯上的p型拓扑绝缘体SnSb2 Te4纳米点(SnSb2 Te4 / G)作为稳定的阳极,用于高速率锂离子电池和钾离子电池。这些SnSb2 Te4 / G复合电极在锂离子电池中显示出超长的循环寿命(1000次循环后在1 A g-1时为478 mAh g-1)和出色的倍率容量(即使在10 A g-1时仍为373 mAh g-1)。由于PN异质结加速了离子的快速迁移,因此,导电拓扑表面态提供了虚拟电子高速公路,以及出色的拟电容性贡献,其优异的相可逆性已通过同步加速器原位X射线粉末衍射得到了证实。令人惊讶地,甚至在用于锂离子存储的实际质量负载水平(> 10 mg cm-2)下,也观察到了持久的使用寿命,并具有出色的K离子存储性能。这项工作通过提高导电拓扑表面,原子掺杂和界面相互作用,为设计高速率电极材料提供了新的见识。