当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The microscale Weissenberg effect for high-viscosity solution pumping at the picoliter level†
Nanoscale ( IF 5.8 ) Pub Date : 2018-03-13 00:00:00 , DOI: 10.1039/c7nr09315b
Xuecui Mei 1, 2, 3, 4 , Qinnan Chen 1, 2, 3, 4 , Shihu Wang 1, 2, 3, 4 , Wei Wang 1, 2, 3, 4 , Dezhi Wu 1, 2, 3, 4 , Daoheng Sun 1, 2, 3, 4
Affiliation  

Transportation of highly viscous solutions at the picoliter level with a rapid dynamic response is paramount for micro/nano-fabrication. With the advantages of a higher length-wall (thickness) ratio and a more stable free surface compared to those of the traditional Weissenberg effect (TWE), the microscale Weissenberg effect (MWE) can continuously and controllably pump high-viscosity solutions at the picoliter scale. Some typical characteristics and behaviors of MWE are investigated as the rotation rod diameter decreases to the microscale of ∼100 μm. The pumped minimum solution volume can reach 167.5 pL per second, and the minimum response time of solution pumping is 0.3 s, which is much shorter than that of pressure driven pumping. Then, a new direct writing with an adjustable jet diameter based on the MWE is proposed to write microstructures on a substrate from a solution with a viscosity of approximately 130.1 Pa s. The stability of the as-spun jet and the deposited structures is improved when a high voltage is applied. To fully demonstrate the advantages of MWE, MWE-based direct writing is performed to successfully fabricate microfluidic channels with variable diameters. Thus, the system can overcome the problems of high transport resistance to the pumping of a high-viscosity solution.

中文翻译:

微量的魏森伯格效应,可在皮升级泵送高粘度溶液

在微升/纳米级制造中,以皮升级的高粘度溶液的运输以及快速的动态响应是至关重要的。与传统的魏森伯格效应(TWE)相比,具有更高的长壁(厚度)比和更稳定的自由表面的优势,微尺度的魏森伯格效应(MWE)可以在皮升处连续可控地泵送高粘度溶液规模。随着旋转棒直径减小到约100μm的微尺度,研究了MWE的一些典型特征和行为。泵送的最小溶液量可以达到每秒167.5 pL,溶液泵送的最小响应时间为0.3 s,这比压力驱动泵送的响应时间短得多。然后,提出了一种新的基于MWE的可调节喷嘴直径的直接写入技术,该技术可从粘度约为130.1 Pa s的溶液中将微结构写入基板。当施加高压时,初生喷射流和沉积结构的稳定性得到改善。为了充分展示MWE的优势,进行了基于MWE的直接写入,以成功制造出直径可变的微流体通道。因此,该系统可以克服对高粘度溶液的泵送具有高输送阻力的问题。基于MWE的直接写入可以成功地制造出直径可变的微流体通道。因此,该系统可以克服对高粘度溶液的泵送具有高输送阻力的问题。基于MWE的直接写入可以成功地制造出直径可变的微流体通道。因此,该系统可以克服对高粘度溶液的泵送具有高输送阻力的问题。
更新日期:2018-03-13
down
wechat
bug