当前位置: X-MOL 学术Adv. Opt. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
“Hot” in Plasmonics: Temperature‐Related Concepts and Applications of Metal Nanostructures
Advanced Optical Materials ( IF 8.0 ) Pub Date : 2019-11-26 , DOI: 10.1002/adom.201901166
Christian Kuppe 1, 2 , Kristina R. Rusimova 1, 2 , Lukas Ohnoutek 1, 2 , Dimitar Slavov 3 , Ventsislav K. Valev 1, 2
Affiliation  

Recent advances in nonlinear optics, hot electrons for renewable energy (e.g., solar cells and water‐splitting), acousto‐optics, nanometalworking, nanorobotics, steam generation, and photothermal cancer therapy are reviewed here. In all these areas, one of the key enabling properties is the ability of metallic nanoparticles to harvest and control light at the subwavelength scale by supporting coherent electronic oscillations, called localized surface plasmon resonances (LSPRs). Various physical properties and potential areas of application emerge depending on the decay mechanism of the LSPR and, especially, depending on the considered timescale. The field of plasmonics has mainly been associated with manipulating electromagnetic near‐fields at the nanoscale, where absorption is an obstacle. However, plasmonic absorption leads to a stream of temperature‐related phenomena that have only recently attracted significant attention. The goal of this review is to highlight exciting new areas of research (such as nanorobotics, nanometalworking, or acousto‐optical techniques) and to survey the most recent progress in more established areas (such as hot electrons, photothermal therapy, and plasmonic steam generation). To set each research area in context, the text is organized around the thermal cycle of the nanoparticles.

中文翻译:

等离子中的“热点”:与温度相关的概念和金属纳米结构的应用

本文回顾了非线性光学,可再生能源的热电子(例如太阳能电池和水分解),声光,纳米金属加工,纳米机器人,蒸汽产生和光热癌症疗法的最新进展。在所有这些领域中,关键的使能特性之一是金属纳米颗粒通过支持相干电子振荡(称为局部表面等离子体共振(LSPR))在亚波长范围内收集和控制光的能力。取决于LSPR的衰减机制,尤其是取决于所考虑的时间范围,会出现各种物理属性和潜在的应用领域。等离子体的领域主要与操纵纳米尺度的电磁近场有关,在纳米尺度上,吸收是一个障碍。然而,等离子体吸收导致一系列与温度有关的现象,直到最近才引起人们的极大关注。这篇综述的目的是强调激动人心的新研究领域(例如纳米机器人,纳米金属加工或声光技术),并调查更成熟领域的最新进展(例如热电子,光热疗法和等离子体激波产生) )。为了在上下文中设置每个研究领域,本文围绕纳米粒子的热循环进行组织。和等离子蒸汽产生)。为了在上下文中设置每个研究领域,本文围绕纳米粒子的热循环进行组织。和等离子蒸汽产生)。为了在上下文中设置每个研究领域,本文围绕纳米粒子的热循环进行组织。
更新日期:2020-01-04
down
wechat
bug