当前位置:
X-MOL 学术
›
Phys. Rev. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN.
Physical Review Letters ( IF 8.1 ) Pub Date : 2019-11-29 , DOI: 10.1103/physrevlett.123.221802 M Aker 1, 2 , K Altenmüller 3, 4, 5 , M Arenz 6 , M Babutzka 7 , J Barrett 8 , S Bauer 9 , M Beck 9, 10 , A Beglarian 11 , J Behrens 1, 7, 9 , T Bergmann 3, 5, 11 , U Besserer 1, 2 , K Blaum 12 , F Block 7 , S Bobien 2 , K Bokeloh 9 , J Bonn 10 , B Bornschein 1, 2 , L Bornschein 1 , H Bouquet 11 , T Brunst 3, 5 , T S Caldwell 13, 14 , L La Cascio 7 , S Chilingaryan 11 , W Choi 7 , T J Corona 8, 13, 14 , K Debowski 7, 15 , M Deffert 7 , M Descher 7 , P J Doe 16 , O Dragoun 17 , G Drexlin 1, 7 , J A Dunmore 16 , S Dyba 9 , F Edzards 3, 5 , L Eisenblätter 11 , K Eitel 1 , E Ellinger 15 , R Engel 1, 7 , S Enomoto 16 , M Erhard 7 , D Eversheim 6 , M Fedkevych 9 , A Felden 1 , S Fischer 1, 2 , B Flatt 10 , J A Formaggio 8 , F M Fränkle 1, 13, 14 , G B Franklin 18 , H Frankrone 11 , F Friedel 7 , D Fuchs 3, 5 , A Fulst 9 , D Furse 8 , K Gauda 9 , H Gemmeke 11 , W Gil 1 , F Glück 1 , S Görhardt 1 , S Groh 7 , S Grohmann 2 , R Grössle 1, 2 , R Gumbsheimer 1 , M Ha Minh 3, 5 , M Hackenjos 1, 2, 7 , V Hannen 9 , F Harms 7 , J Hartmann 11 , N Haußmann 15 , F Heizmann 7 , K Helbing 15 , S Hickford 1, 15 , D Hilk 7 , B Hillen 9 , D Hillesheimer 1, 2 , D Hinz 1 , T Höhn 1 , B Holzapfel 2 , S Holzmann 2 , T Houdy 3, 5 , M A Howe 13, 14 , A Huber 7 , T M James 2 , A Jansen 1 , A Kaboth 8 , C Karl 3, 5 , O Kazachenko 19 , J Kellerer 7 , N Kernert 1 , L Kippenbrock 16 , M Kleesiek 7 , M Klein 1, 7 , C Köhler 3, 5 , L Köllenberger 1 , A Kopmann 11 , M Korzeczek 7 , A Kosmider 1 , A Kovalík 17 , B Krasch 1, 2 , M Kraus 7 , H Krause 1 , L Kuckert 1 , B Kuffner 1 , N Kunka 11 , T Lasserre 3, 4, 5 , T L Le 1, 2 , O Lebeda 17 , M Leber 16 , B Lehnert 20 , J Letnev 21 , F Leven 7 , S Lichter 1 , V M Lobashev 19 , A Lokhov 9, 19 , M Machatschek 7 , E Malcherek 1 , K Müller 1 , M Mark 1 , A Marsteller 1, 2 , E L Martin 13, 14, 16 , C Melzer 1, 2 , A Menshikov 11 , S Mertens 1, 3, 5, 20 , L I Minter 16 , S Mirz 1, 2 , B Monreal 22 , P I Morales Guzmán 3, 5 , K Müller 1 , U Naumann 15 , W Ndeke 23 , H Neumann 2 , S Niemes 1, 2 , M Noe 2 , N S Oblath 8 , H-W Ortjohann 9 , A Osipowicz 21 , B Ostrick 9 , E Otten 10 , D S Parno 16, 18 , D G Phillips 13, 14 , P Plischke 1 , A Pollithy 3, 5 , A W P Poon 20 , J Pouryamout 15 , M Prall 9 , F Priester 1, 2 , M Röllig 1, 2 , C Röttele 1, 2, 7 , P C-O Ranitzsch 9 , O Rest 9 , R Rinderspacher 1 , R G H Robertson 16 , C Rodenbeck 9 , P Rohr 11 , Ch Roll 23 , S Rupp 1, 2, 7 , M Ryšavý 17 , R Sack 9 , A Saenz 23 , P Schäfer 1, 2 , L Schimpf 7 , K Schlösser 1 , M Schlösser 1, 2 , L Schlüter 3, 5 , H Schön 2 , K Schönung 1, 2, 12 , M Schrank 1 , B Schulz 23 , J Schwarz 1 , H Seitz-Moskaliuk 7 , W Seller 21 , V Sibille 8 , D Siegmann 3, 5 , A Skasyrskaya 19 , M Slezák 5, 17 , A Špalek 17 , F Spanier 1 , M Steidl 1 , N Steinbrink 9 , M Sturm 1, 2 , M Suesser 2 , M Sun 16 , D Tcherniakhovski 11 , H H Telle 24 , T Thümmler 1, 9 , L A Thorne 18 , N Titov 19 , I Tkachev 19 , N Trost 1 , K Urban 3, 5 , D Vénos 17 , K Valerius 1, 9 , B A VanDevender 16 , R Vianden 6 , A P Vizcaya Hernández 18 , B L Wall 16 , S Wüstling 11 , M Weber 11 , C Weinheimer 9 , C Weiss 25 , S Welte 1, 2 , J Wendel 1, 2 , K J Wierman 13, 14 , J F Wilkerson 13, 14 , J Wolf 7 , W Xu 8 , Y-R Yen 18 , M Zacher 9 , S Zadorozhny 19 , M Zbořil 9, 17 , G Zeller 1, 2 ,
Physical Review Letters ( IF 8.1 ) Pub Date : 2019-11-29 , DOI: 10.1103/physrevlett.123.221802 M Aker 1, 2 , K Altenmüller 3, 4, 5 , M Arenz 6 , M Babutzka 7 , J Barrett 8 , S Bauer 9 , M Beck 9, 10 , A Beglarian 11 , J Behrens 1, 7, 9 , T Bergmann 3, 5, 11 , U Besserer 1, 2 , K Blaum 12 , F Block 7 , S Bobien 2 , K Bokeloh 9 , J Bonn 10 , B Bornschein 1, 2 , L Bornschein 1 , H Bouquet 11 , T Brunst 3, 5 , T S Caldwell 13, 14 , L La Cascio 7 , S Chilingaryan 11 , W Choi 7 , T J Corona 8, 13, 14 , K Debowski 7, 15 , M Deffert 7 , M Descher 7 , P J Doe 16 , O Dragoun 17 , G Drexlin 1, 7 , J A Dunmore 16 , S Dyba 9 , F Edzards 3, 5 , L Eisenblätter 11 , K Eitel 1 , E Ellinger 15 , R Engel 1, 7 , S Enomoto 16 , M Erhard 7 , D Eversheim 6 , M Fedkevych 9 , A Felden 1 , S Fischer 1, 2 , B Flatt 10 , J A Formaggio 8 , F M Fränkle 1, 13, 14 , G B Franklin 18 , H Frankrone 11 , F Friedel 7 , D Fuchs 3, 5 , A Fulst 9 , D Furse 8 , K Gauda 9 , H Gemmeke 11 , W Gil 1 , F Glück 1 , S Görhardt 1 , S Groh 7 , S Grohmann 2 , R Grössle 1, 2 , R Gumbsheimer 1 , M Ha Minh 3, 5 , M Hackenjos 1, 2, 7 , V Hannen 9 , F Harms 7 , J Hartmann 11 , N Haußmann 15 , F Heizmann 7 , K Helbing 15 , S Hickford 1, 15 , D Hilk 7 , B Hillen 9 , D Hillesheimer 1, 2 , D Hinz 1 , T Höhn 1 , B Holzapfel 2 , S Holzmann 2 , T Houdy 3, 5 , M A Howe 13, 14 , A Huber 7 , T M James 2 , A Jansen 1 , A Kaboth 8 , C Karl 3, 5 , O Kazachenko 19 , J Kellerer 7 , N Kernert 1 , L Kippenbrock 16 , M Kleesiek 7 , M Klein 1, 7 , C Köhler 3, 5 , L Köllenberger 1 , A Kopmann 11 , M Korzeczek 7 , A Kosmider 1 , A Kovalík 17 , B Krasch 1, 2 , M Kraus 7 , H Krause 1 , L Kuckert 1 , B Kuffner 1 , N Kunka 11 , T Lasserre 3, 4, 5 , T L Le 1, 2 , O Lebeda 17 , M Leber 16 , B Lehnert 20 , J Letnev 21 , F Leven 7 , S Lichter 1 , V M Lobashev 19 , A Lokhov 9, 19 , M Machatschek 7 , E Malcherek 1 , K Müller 1 , M Mark 1 , A Marsteller 1, 2 , E L Martin 13, 14, 16 , C Melzer 1, 2 , A Menshikov 11 , S Mertens 1, 3, 5, 20 , L I Minter 16 , S Mirz 1, 2 , B Monreal 22 , P I Morales Guzmán 3, 5 , K Müller 1 , U Naumann 15 , W Ndeke 23 , H Neumann 2 , S Niemes 1, 2 , M Noe 2 , N S Oblath 8 , H-W Ortjohann 9 , A Osipowicz 21 , B Ostrick 9 , E Otten 10 , D S Parno 16, 18 , D G Phillips 13, 14 , P Plischke 1 , A Pollithy 3, 5 , A W P Poon 20 , J Pouryamout 15 , M Prall 9 , F Priester 1, 2 , M Röllig 1, 2 , C Röttele 1, 2, 7 , P C-O Ranitzsch 9 , O Rest 9 , R Rinderspacher 1 , R G H Robertson 16 , C Rodenbeck 9 , P Rohr 11 , Ch Roll 23 , S Rupp 1, 2, 7 , M Ryšavý 17 , R Sack 9 , A Saenz 23 , P Schäfer 1, 2 , L Schimpf 7 , K Schlösser 1 , M Schlösser 1, 2 , L Schlüter 3, 5 , H Schön 2 , K Schönung 1, 2, 12 , M Schrank 1 , B Schulz 23 , J Schwarz 1 , H Seitz-Moskaliuk 7 , W Seller 21 , V Sibille 8 , D Siegmann 3, 5 , A Skasyrskaya 19 , M Slezák 5, 17 , A Špalek 17 , F Spanier 1 , M Steidl 1 , N Steinbrink 9 , M Sturm 1, 2 , M Suesser 2 , M Sun 16 , D Tcherniakhovski 11 , H H Telle 24 , T Thümmler 1, 9 , L A Thorne 18 , N Titov 19 , I Tkachev 19 , N Trost 1 , K Urban 3, 5 , D Vénos 17 , K Valerius 1, 9 , B A VanDevender 16 , R Vianden 6 , A P Vizcaya Hernández 18 , B L Wall 16 , S Wüstling 11 , M Weber 11 , C Weinheimer 9 , C Weiss 25 , S Welte 1, 2 , J Wendel 1, 2 , K J Wierman 13, 14 , J F Wilkerson 13, 14 , J Wolf 7 , W Xu 8 , Y-R Yen 18 , M Zacher 9 , S Zadorozhny 19 , M Zbořil 9, 17 , G Zeller 1, 2 ,
Affiliation
We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (-1.0_{-1.1}^{+0.9}) eV^{2}. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of 2 and provides model-independent input to cosmological studies of structure formation.
中文翻译:
通过KATRIN的直接运动学方法改进了中微子质量的上限。
我们报告了2019年春季卡尔斯鲁厄Tri中微子实验KATRIN的前四周科学实验的中微子质量测量结果。来自高纯度气态分子molecular源的β衰变电子通过高分辨率MAC-进行能量分析E过滤器。积分电子光谱在运动学端点在18.57 keV附近的狭窄区间内的拟合给出了(-1.0 _ {-1.1} ^ {+ 0.9})eV ^ {2}的有效中微子质量平方值。由此,我们得出了中微子绝对质量尺度上的1.1 eV(90%置信水平)的上限。该值与KATRIN灵敏度一致。它比以前的运动学测量质量极限提高了将近2倍,并为结构形成的宇宙学研究提供了与模型无关的输入。
更新日期:2019-11-26
中文翻译:
通过KATRIN的直接运动学方法改进了中微子质量的上限。
我们报告了2019年春季卡尔斯鲁厄Tri中微子实验KATRIN的前四周科学实验的中微子质量测量结果。来自高纯度气态分子molecular源的β衰变电子通过高分辨率MAC-进行能量分析E过滤器。积分电子光谱在运动学端点在18.57 keV附近的狭窄区间内的拟合给出了(-1.0 _ {-1.1} ^ {+ 0.9})eV ^ {2}的有效中微子质量平方值。由此,我们得出了中微子绝对质量尺度上的1.1 eV(90%置信水平)的上限。该值与KATRIN灵敏度一致。它比以前的运动学测量质量极限提高了将近2倍,并为结构形成的宇宙学研究提供了与模型无关的输入。