当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Sensitive Sulfide Monitoring in Live Cells by Dark-Field Microscopy Based on the Formation of Ag2S on Au@AgI Core–Shell Nanoparticles
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2019-11-27 00:00:00 , DOI: 10.1021/acssuschemeng.9b06238 Qiaojun Li 1 , Meihong Peng 1 , Chao Wang 1 , Changqing Li 1 , Kai Li 1 , Yuqing Lin 1
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2019-11-27 00:00:00 , DOI: 10.1021/acssuschemeng.9b06238 Qiaojun Li 1 , Meihong Peng 1 , Chao Wang 1 , Changqing Li 1 , Kai Li 1 , Yuqing Lin 1
Affiliation
Hydrogen sulfide (H2S) is the third endogenous gas in mammals that plays an important role in understanding human physiological and pathological processes. However, it remains difficult to measure H2S in living biological specimens due to interference of other biothiols (GSH, Cys, Hcy, and thiol-containing proteins) as well as low concentrations of H2S (as low as sub-nM). Here, we present Au@AgI core–shell plasmonic nanoparticles (PNPs) as highly sensitive probes to acquire sulfide rapid monitoring in biological environments. When the Au@AgI PNPs are exposed to sulfide, the AgI transforms into Ag2S, leading a change of local surface plasmon resonance (LSPR), thereby resulting in a color and light intensity change at the single nanoparticle level which can be monitored by dark-field microscopy (DFM). This strategy has an ultralow limit of detection (LOD) of 33 pM and great anti-interference ability for sulfide detection in biological environments. This method was successfully used for highly sensitive sulfide mapping in live cells and to record the changes of H2S levels in different brain regions of rats during acute cerebral ischemia, validating that this method suitable for trace sulfide sensing in biological environments. We anticipate that this sulfide sensor has potential applications for studying complex neurochemical changes.
中文翻译:
基于Au @ AgI核壳纳米粒子上Ag2S形成的暗场显微镜灵敏监测活细胞中的硫化物
硫化氢(H 2 S)是哺乳动物中的第三种内源性气体,在理解人类的生理和病理过程中起着重要的作用。但是,它仍然难以测量ħ 2 S IN活生物标本由于其他biothiols的干扰(GSH,半胱氨酸,同型半胱氨酸,及含硫醇的蛋白质),以及低浓度的H的2 S(低至亚nM) 。在这里,我们介绍Au @ AgI核壳型等离子纳米颗粒(PNP)作为高度敏感的探针,以在生物环境中获得硫化物的快速监测。当Au @ AgI PNP暴露于硫化物时,AgI转变为Ag 2S引起局部表面等离子体共振(LSPR)的变化,从而导致单个纳米颗粒水平的颜色和光强度变化,其可以通过暗场显微镜(DFM)监测。该策略具有33 pM的超低检测限(LOD),并且对生物环境中的硫化物检测具有强大的抗干扰能力。该方法已成功用于活细胞中高灵敏的硫化物作图,并记录了急性脑缺血期间大鼠不同脑区H 2 S水平的变化,证明该方法适用于生物环境中的痕量硫化物传感。我们预计该硫化物传感器在研究复杂的神经化学变化方面具有潜在的应用。
更新日期:2019-11-28
中文翻译:
基于Au @ AgI核壳纳米粒子上Ag2S形成的暗场显微镜灵敏监测活细胞中的硫化物
硫化氢(H 2 S)是哺乳动物中的第三种内源性气体,在理解人类的生理和病理过程中起着重要的作用。但是,它仍然难以测量ħ 2 S IN活生物标本由于其他biothiols的干扰(GSH,半胱氨酸,同型半胱氨酸,及含硫醇的蛋白质),以及低浓度的H的2 S(低至亚nM) 。在这里,我们介绍Au @ AgI核壳型等离子纳米颗粒(PNP)作为高度敏感的探针,以在生物环境中获得硫化物的快速监测。当Au @ AgI PNP暴露于硫化物时,AgI转变为Ag 2S引起局部表面等离子体共振(LSPR)的变化,从而导致单个纳米颗粒水平的颜色和光强度变化,其可以通过暗场显微镜(DFM)监测。该策略具有33 pM的超低检测限(LOD),并且对生物环境中的硫化物检测具有强大的抗干扰能力。该方法已成功用于活细胞中高灵敏的硫化物作图,并记录了急性脑缺血期间大鼠不同脑区H 2 S水平的变化,证明该方法适用于生物环境中的痕量硫化物传感。我们预计该硫化物传感器在研究复杂的神经化学变化方面具有潜在的应用。