当前位置:
X-MOL 学术
›
J. Mater. Chem. A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High temperature lead-free BNT-based ceramics with stable energy storage and dielectric properties†
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2019-11-22 , DOI: 10.1039/c9ta10347c Chaoqiong Zhu 1, 2, 3, 4, 5 , Ziming Cai 1, 2, 3, 4, 5 , Bingcheng Luo 1, 2, 3, 4, 5 , Limin Guo 5, 6, 7, 8 , Longtu Li 1, 2, 3, 4, 5 , Xiaohui Wang 1, 2, 3, 4, 5
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2019-11-22 , DOI: 10.1039/c9ta10347c Chaoqiong Zhu 1, 2, 3, 4, 5 , Ziming Cai 1, 2, 3, 4, 5 , Bingcheng Luo 1, 2, 3, 4, 5 , Limin Guo 5, 6, 7, 8 , Longtu Li 1, 2, 3, 4, 5 , Xiaohui Wang 1, 2, 3, 4, 5
Affiliation
High-temperature dielectric ceramics are in urgent demand due to the rapid development of numerous emerging applications. However, producing dielectric ceramics with favorable temperature, frequency and electric field stability is still a huge challenge. The construction of multi-phase coexistence material systems is an effective way to obtain stable dielectric and energy storage properties. In this work, NaNbO3 (NN) modified 0.95Bi0.5Na0.5TiO3–0.05SrZrO3 (BNTSZ) ceramics ((1 − x)BNTSZ–xNN) are designed to achieve the coexistence of rhombohedral and tetragonal phases. The variation in the dielectric permittivity of the 0.8BNTSZ–0.2NN ceramic is less than ±15% over the temperature range from −55 °C to 545 °C, which is the reported record-high upper operating temperature, with a high room-temperature dielectric permittivity of 1170. The 0.8BNTSZ–0.2NN ceramic exhibits excellent frequency and electric field stability as well. Additionally, a large discharge energy density of 3.14 J cm−3 is obtained in the 0.85BNTSZ–0.15NN ceramic with an energy efficiency of 79% at a high temperature of 120 °C under 230 kV cm−1, with the variation in the discharge energy density being less than ±4% in the temperature range from 25 °C to 180 °C under 120 kV cm−1. All these features demonstrate that the (1 − x)BNTSZ–xNN ceramics are promising candidates for use at extremely high temperature in both dielectric and energy storage capacitor applications.
中文翻译:
高温无铅BNT基陶瓷,具有稳定的能量存储和介电性能†
由于众多新兴应用的迅速发展,对高温介电陶瓷的需求迫切。然而,生产具有良好的温度,频率和电场稳定性的介电陶瓷仍然是巨大的挑战。多相共存材料体系的构建是获得稳定的介电和储能性能的有效途径。在这项工作中,NaNbO 3(NN)改性了0.95Bi 0.5 Na 0.5 TiO 3 –0.05SrZrO 3(BNTSZ)陶瓷((1- x)BNTSZ– xNN)旨在实现菱形和四方相的共存。在-55°C至545°C的温度范围内,0.8BNTSZ-0.2NN陶瓷的介电常数变化小于±15%,这是据报道的最高工作温度,而室温下则较高。温度介电常数为1170。0.8BNTSZ-0.2NN陶瓷也具有出色的频率和电场稳定性。另外,3.14Ĵ厘米大的放电能量密度-3在0.85BNTSZ-0.15NN陶瓷79%在高温下的120℃的能效下230千伏厘米获得-1,随着变化在120 kV cm -1下在25°C至180°C的温度范围内放电能量密度小于±4%。所有这些特征表明,(1- x)BNTSZ– x NN陶瓷有望在极高温度下用于介电和储能电容器应用。
更新日期:2020-01-02
中文翻译:
高温无铅BNT基陶瓷,具有稳定的能量存储和介电性能†
由于众多新兴应用的迅速发展,对高温介电陶瓷的需求迫切。然而,生产具有良好的温度,频率和电场稳定性的介电陶瓷仍然是巨大的挑战。多相共存材料体系的构建是获得稳定的介电和储能性能的有效途径。在这项工作中,NaNbO 3(NN)改性了0.95Bi 0.5 Na 0.5 TiO 3 –0.05SrZrO 3(BNTSZ)陶瓷((1- x)BNTSZ– xNN)旨在实现菱形和四方相的共存。在-55°C至545°C的温度范围内,0.8BNTSZ-0.2NN陶瓷的介电常数变化小于±15%,这是据报道的最高工作温度,而室温下则较高。温度介电常数为1170。0.8BNTSZ-0.2NN陶瓷也具有出色的频率和电场稳定性。另外,3.14Ĵ厘米大的放电能量密度-3在0.85BNTSZ-0.15NN陶瓷79%在高温下的120℃的能效下230千伏厘米获得-1,随着变化在120 kV cm -1下在25°C至180°C的温度范围内放电能量密度小于±4%。所有这些特征表明,(1- x)BNTSZ– x NN陶瓷有望在极高温度下用于介电和储能电容器应用。