当前位置:
X-MOL 学术
›
Bioresource Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Treatment of furazolidone contaminated water using banana pseudostem biochar engineered with facile synthesized magnetic nanocomposites.
Bioresource Technology ( IF 9.7 ) Pub Date : 2019-11-21 , DOI: 10.1016/j.biortech.2019.122472 Ranjit Gurav 1 , Shashi Kant Bhatia 2 , Tae-Rim Choi 1 , Ye-Lim Park 1 , Jun Young Park 1 , Yeong-Hoon Han 1 , Govind Vyavahare 3 , Jyoti Jadhav 3 , Hun-Suk Song 1 , Peizhou Yang 4 , Jeong-Jun Yoon 5 , Amit Bhatnagar 6 , Yong-Keun Choi 1 , Yung-Hun Yang 2
Bioresource Technology ( IF 9.7 ) Pub Date : 2019-11-21 , DOI: 10.1016/j.biortech.2019.122472 Ranjit Gurav 1 , Shashi Kant Bhatia 2 , Tae-Rim Choi 1 , Ye-Lim Park 1 , Jun Young Park 1 , Yeong-Hoon Han 1 , Govind Vyavahare 3 , Jyoti Jadhav 3 , Hun-Suk Song 1 , Peizhou Yang 4 , Jeong-Jun Yoon 5 , Amit Bhatnagar 6 , Yong-Keun Choi 1 , Yung-Hun Yang 2
Affiliation
The present study enlightens facile synthesis and characterization of magnetic biochar derived from waste banana pseudostem biomass for the removal of nitrofuran antibiotic 'furazolidone' (FZD). Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), magnetic hysteresis, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) revealed successful hybridization of magnetic nanocomposites with biochar (BPB600). The maximum adsorption capacity of magnetic BPB600 was 96.81% (37.86 mg g-1), which was significantly higher than the non-coated BPB600 (77.25%; 31.45 mg g-1). Adsorption kinetics data fitted well with pseudo-second order, and Elovich model demonstrating dominance of the chemisorption mechanism. Furthermore, the response surface methodology (RSM) was applied to evaluate the interactive effect of pH, temperature, and FZD concentration on adsorption. Therefore, the results of present study would provide an effective strategy to tackle antibiotic contaminants responsible for the antibiotic resistance genes or bacteria that decreases the therapeutic value of antibiotics.
中文翻译:
使用易于合成的磁性纳米复合材料设计的香蕉假茎生物炭处理呋喃唑酮污染的水。
本研究启发了废香蕉假茎生物质衍生的磁性生物炭的简便合成和表征,用于去除硝基呋喃抗生素“呋喃唑酮”(FZD)。Brunauer-Emmett-Teller(BET),扫描电子显微镜(SEM),磁滞,X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)表明,磁性纳米复合材料与生物炭(BPB600)能够成功杂交。磁性BPB600的最大吸附容量为96.81%(37.86 mg g-1),明显高于未涂覆的BPB600(77.25%; 31.45 mg g-1)。吸附动力学数据非常适合拟二阶反应,Elovich模型证明了化学吸附机理的优势。此外,应用响应面方法(RSM)评估了pH的交互作用,温度和FZD浓度对吸附的影响。因此,本研究的结果将为解决导致抗生素抗性基因或细菌降低抗生素治疗价值的抗生素污染物提供有效策略。
更新日期:2019-11-21
中文翻译:
使用易于合成的磁性纳米复合材料设计的香蕉假茎生物炭处理呋喃唑酮污染的水。
本研究启发了废香蕉假茎生物质衍生的磁性生物炭的简便合成和表征,用于去除硝基呋喃抗生素“呋喃唑酮”(FZD)。Brunauer-Emmett-Teller(BET),扫描电子显微镜(SEM),磁滞,X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)表明,磁性纳米复合材料与生物炭(BPB600)能够成功杂交。磁性BPB600的最大吸附容量为96.81%(37.86 mg g-1),明显高于未涂覆的BPB600(77.25%; 31.45 mg g-1)。吸附动力学数据非常适合拟二阶反应,Elovich模型证明了化学吸附机理的优势。此外,应用响应面方法(RSM)评估了pH的交互作用,温度和FZD浓度对吸附的影响。因此,本研究的结果将为解决导致抗生素抗性基因或细菌降低抗生素治疗价值的抗生素污染物提供有效策略。