当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Accelerated Stress Test Method for the Assessment of Membrane Lifetime in Vanadium Redox Flow Batteries.
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-12-10 , DOI: 10.1021/acsami.9b15736
Fabio J Oldenburg 1 , Ayoub Ouarga 1, 2, 3 , Thomas Justus Schmidt 1, 4 , Lorenz Gubler 1
Affiliation  

An accelerated stress test (AST) method was developed to estimate the lifetime of ion-exchange membranes in a vanadium redox flow battery. The oxidative VO2+ ions present in the charged positive electrolyte are the predominant stressor causing loss of functional groups and membrane conductivity. Membrane aging was accelerated in ex situ tests by exploiting elevated temperatures and the increased oxidative strength of Ce4+. Acceleration factors were determined on the basis of the analysis of aged radiation grafted g(S-AN) membranes. The degradation in a Ce4+ solution was found to be ∼4 times faster than in VO2+. The highest acceleration factor of ∼200 was found for the degradation with Ce4+ at 80 °C. The degradation reaction present in the accelerated stress test showed a similar activation energy of ∼50 kJ/mol in VO2+ and Ce4+ solutions, suggesting a similar reaction pathway. The applicability of the test was further evaluated with the second membrane, g(AMS-MAN). Its lifetime was estimated based on the accelerated stress test and acceleration factors previously determined for the g(S-AN) membrane and compared to the lifetime projected from an extended cycling experiment in the cell. The two values were in the same range of ∼4000 h. The proposed AST can serve as a basis for predictive modeling of membrane lifetime in vanadium redox flow batteries. The potential of the method and the limitations are discussed.

中文翻译:

用于评估钒氧化还原液流电池膜寿命的加速应力测试方法。

开发了一种加速应力测试(AST)方法来估算钒氧化还原液流电池中离子交换膜的寿命。存在于带电的正电解质中的氧化性VO2 +离子是主要的应激源,导致功能基团和​​膜电导率的损失。通过利用高温和提高Ce4 +的氧化强度,在非原位测试中加速了膜的老化。根据老化的辐射接枝g(S-AN)膜的分析确定加速因子。发现Ce4 +溶液中的降解比VO2 +快约4倍。对于在80°C下用Ce4 +降解,发现最高加速因子为〜200。加速应力测试中出现的降解反应在VO2 +和Ce4 +溶液中显示出约50 kJ / mol的活化能,提示类似的反应途径。使用第二种膜g(AMS-MAN)进一步评估了该测试的适用性。它的寿命是根据先前为g(S-AN)膜确定的加速应力测试和加速因子估算的,并与电池中延长循环实验得出的寿命进行了比较。这两个值在〜4000 h的相同范围内。所提出的AST可以作为钒氧化还原液流电池膜寿命预测模型的基础。讨论了该方法的潜力和局限性。它的寿命是根据先前为g(S-AN)膜确定的加速应力测试和加速因子估算的,并与电池中延长循环实验得出的寿命进行了比较。这两个值在〜4000 h的相同范围内。所提出的AST可以作为钒氧化还原液流电池膜寿命预测模型的基础。讨论了该方法的潜力和局限性。它的寿命是根据先前为g(S-AN)膜确定的加速应力测试和加速因子估算的,并与电池中延长循环实验得出的寿命进行了比较。这两个值在〜4000 h的相同范围内。所提出的AST可以作为钒氧化还原液流电池膜寿命预测模型的基础。讨论了该方法的潜力和局限性。
更新日期:2019-12-11
down
wechat
bug