当前位置:
X-MOL 学术
›
J. Comput. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Functional and Basis Set Dependence for Time‐Dependent Density Functional Theory Trajectory Surface Hopping Molecular Dynamics: Cis ‐Azobenzene Photoisomerization
Journal of Computational Chemistry ( IF 3.4 ) Pub Date : 2019-11-19 , DOI: 10.1002/jcc.26116 Linfeng Ye, Chao Xu, Feng Long Gu, Chaoyuan Zhu
Journal of Computational Chemistry ( IF 3.4 ) Pub Date : 2019-11-19 , DOI: 10.1002/jcc.26116 Linfeng Ye, Chao Xu, Feng Long Gu, Chaoyuan Zhu
Within three functionals (TD‐B3LYP, TD‐BHandHLYP, and TD‐CAM‐B3LYP) in combination with four basis sets (3‐21g, 6‐31g, 6‐31g(d), and cc‐pvdz), global switching (GS) trajectory surface hopping molecular dynamics has been performed for cis‐to‐trans azobenzene photoisomerization up to the S1(nπ*) excitation. Although all the combinations show artificial double‐cone structure of conical intersection between ground and first excited states, simulated quantum yields and lifetimes are in good agreement with one another; 0.6 (±5%) and 40.5 fs (±10%) by TD‐B3LYP, 0.5 (±10%) and 35.5 fs (±4%) by TD‐BHandHLYP, and 0.44 (±9%) and 35.2 fs (±10%) by TD‐CAM‐B3LYP. By analyzing distributions of excited‐state population decays, hopping spots, and typical trajectories with performance of 12 functional/basis set combinations, it has been concluded that functional dependence for given basis set is slightly more sensitive than basis set dependence for given functional. The present GS on‐the‐fly time‐dependent density functional theory (TDDFT) trajectory surface hopping simulation can provide practical benchmark guidelines for conical intersection driven excited‐state molecular dynamics simulation involving in large complex system within ordinary TDDFT framework. © 2019 Wiley Periodicals, Inc.
中文翻译:
瞬态密度泛函理论轨迹表面跳跃分子动力学的泛函和基组依赖性:顺式偶氮苯光异构化
在三个泛函(TD-B3LYP、TD-BHandHLYP 和 TD-CAM-B3LYP)中结合四个基组(3-21g、6-31g、6-31g(d) 和 cc-pvdz),全局切换( GS) 轨迹表面跳跃分子动力学已用于顺反式偶氮苯光异构化直至 S1(nπ*) 激发。尽管所有组合都显示了基态和第一激发态之间锥形交叉的人工双锥结构,但模拟的量子产率和寿命彼此非常吻合;TD-B3LYP 为 0.6 (±5%) 和 40.5 fs (±10%),TD-BHandHLYP 为 0.5 (±10%) 和 35.5 fs (±4%),以及 0.44 (±9%) 和 35.2 fs (±10%) 10%) 由 TD-CAM-B3LYP。通过分析激发态种群衰减、跳跃点和典型轨迹的分布,具有 12 个功能/基组组合的性能,已经得出结论,给定基组的函数依赖性比给定函数的基组依赖性稍微敏感。目前的 GS 动态时间相关密度泛函理论 (TDDFT) 轨迹表面跳跃模拟可以为锥形交叉驱动的激发态分子动力学模拟提供实用的基准指导,该模拟涉及普通 TDDFT 框架内的大型复杂系统。© 2019 威利期刊公司。目前的 GS 动态瞬态密度泛函理论 (TDDFT) 轨迹表面跳跃模拟可以为锥形交叉驱动的激发态分子动力学模拟提供实用的基准指南,该模拟涉及普通 TDDFT 框架内的大型复杂系统。© 2019 威利期刊公司。目前的 GS 动态瞬态密度泛函理论 (TDDFT) 轨迹表面跳跃模拟可以为锥形交叉驱动的激发态分子动力学模拟提供实用的基准指南,该模拟涉及普通 TDDFT 框架内的大型复杂系统。© 2019 威利期刊公司。
更新日期:2019-11-19
中文翻译:
瞬态密度泛函理论轨迹表面跳跃分子动力学的泛函和基组依赖性:顺式偶氮苯光异构化
在三个泛函(TD-B3LYP、TD-BHandHLYP 和 TD-CAM-B3LYP)中结合四个基组(3-21g、6-31g、6-31g(d) 和 cc-pvdz),全局切换( GS) 轨迹表面跳跃分子动力学已用于顺反式偶氮苯光异构化直至 S1(nπ*) 激发。尽管所有组合都显示了基态和第一激发态之间锥形交叉的人工双锥结构,但模拟的量子产率和寿命彼此非常吻合;TD-B3LYP 为 0.6 (±5%) 和 40.5 fs (±10%),TD-BHandHLYP 为 0.5 (±10%) 和 35.5 fs (±4%),以及 0.44 (±9%) 和 35.2 fs (±10%) 10%) 由 TD-CAM-B3LYP。通过分析激发态种群衰减、跳跃点和典型轨迹的分布,具有 12 个功能/基组组合的性能,已经得出结论,给定基组的函数依赖性比给定函数的基组依赖性稍微敏感。目前的 GS 动态时间相关密度泛函理论 (TDDFT) 轨迹表面跳跃模拟可以为锥形交叉驱动的激发态分子动力学模拟提供实用的基准指导,该模拟涉及普通 TDDFT 框架内的大型复杂系统。© 2019 威利期刊公司。目前的 GS 动态瞬态密度泛函理论 (TDDFT) 轨迹表面跳跃模拟可以为锥形交叉驱动的激发态分子动力学模拟提供实用的基准指南,该模拟涉及普通 TDDFT 框架内的大型复杂系统。© 2019 威利期刊公司。目前的 GS 动态瞬态密度泛函理论 (TDDFT) 轨迹表面跳跃模拟可以为锥形交叉驱动的激发态分子动力学模拟提供实用的基准指南,该模拟涉及普通 TDDFT 框架内的大型复杂系统。© 2019 威利期刊公司。