当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium‐ and Sodium‐Ion Batteries
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2019-11-18 , DOI: 10.1002/aenm.201902485 Shan Fang 1, 2 , Dominic Bresser 1, 2 , Stefano Passerini 1, 2
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2019-11-18 , DOI: 10.1002/aenm.201902485 Shan Fang 1, 2 , Dominic Bresser 1, 2 , Stefano Passerini 1, 2
Affiliation
Lithium‐ion batteries (LIBs) with outstanding energy and power density have been extensively investigated in recent years, rendering them the most suitable energy storage technology for application in emerging markets such as electric vehicles and stationary storage. More recently, sodium, one of the most abundant elements on earth, exhibiting similar physicochemical properties as lithium, has been gaining increasing attention for the development of sodium‐ion batteries (SIBs) in order to address the concern about Li availability and cost—especially with regard to stationary applications for which size and volume of the battery are of less importance. Compared with traditional intercalation reactions, conversion reaction‐based transition metal oxides (TMOs) are prospective anode materials for rechargeable batteries thanks to their low cost and high gravimetric specific capacities. In this review, the recent progress and remaining challenges of conversion reactions for LIBs and SIBs are discussed, covering an overview about the different synthesis methods, morphological characteristics, as well as their electrochemical performance. Potential future research directions and a perspective toward the practical application of TMOs for electrochemical energy storage are also provided.
中文翻译:
锂和钠离子电池中用于电化学储能的过渡金属氧化物阳极
近年来,对具有出色能量和功率密度的锂离子电池(LIB)进行了广泛研究,使其成为最适合新兴市场(如电动汽车和固定式存储)应用的储能技术。最近,钠是地球上最丰富的元素之一,其表现出与锂相似的物理化学性质,已日益引起人们对钠离子电池(SIB)的开发的关注,以解决对锂可用性和成本的关注,特别是对于电池尺寸和体积不太重要的固定式应用而言。与传统的插层反应相比,基于转化反应的过渡金属氧化物(TMO)由于其低成本和高比重比重而成为可再充电电池的潜在阳极材料。在这篇综述中,讨论了LIB和SIB的转化反应的最新进展和尚存的挑战,涵盖了有关不同合成方法,形态特征及其电化学性能的概述。还提供了潜在的未来研究方向和TMO在电化学能量存储中的实际应用前景。以及它们的电化学性能。还提供了潜在的未来研究方向和TMO在电化学能量存储中的实际应用前景。以及它们的电化学性能。还提供了潜在的未来研究方向和TMO在电化学能量存储中的实际应用前景。
更新日期:2020-01-07
中文翻译:
锂和钠离子电池中用于电化学储能的过渡金属氧化物阳极
近年来,对具有出色能量和功率密度的锂离子电池(LIB)进行了广泛研究,使其成为最适合新兴市场(如电动汽车和固定式存储)应用的储能技术。最近,钠是地球上最丰富的元素之一,其表现出与锂相似的物理化学性质,已日益引起人们对钠离子电池(SIB)的开发的关注,以解决对锂可用性和成本的关注,特别是对于电池尺寸和体积不太重要的固定式应用而言。与传统的插层反应相比,基于转化反应的过渡金属氧化物(TMO)由于其低成本和高比重比重而成为可再充电电池的潜在阳极材料。在这篇综述中,讨论了LIB和SIB的转化反应的最新进展和尚存的挑战,涵盖了有关不同合成方法,形态特征及其电化学性能的概述。还提供了潜在的未来研究方向和TMO在电化学能量存储中的实际应用前景。以及它们的电化学性能。还提供了潜在的未来研究方向和TMO在电化学能量存储中的实际应用前景。以及它们的电化学性能。还提供了潜在的未来研究方向和TMO在电化学能量存储中的实际应用前景。